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Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the 
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof: 

NIZKs for all of NP from LWE [CCH+19, PS19]
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NIZK Argument in 
the CRS model

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without 
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We give an efficient (smaller proof size) base NIZK construction for NP from LWE without 
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We give an efficient (smaller proof size) base NIZK construction for NP from LWE without 
parallel repetition and Karp reductions.

Our Work

[GGI+15] Can use FHE to bootstrap 
an underlying NIZK to one with proof 

size  bits. |w | + 𝗉𝗈𝗅𝗒(k)



Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency. 

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of 
 for any small constant . 

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties 
of the Parvaresh-Vardy code!  But general list-recovery does not take advantage of the 
special structure present in the MPC-in-the-head setting. 

•  Our work:  The bad challenge set structure present in a modification of the [IKOS07] 
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler 
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use 
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .
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Õ(k)



Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency. 

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of 
 for any small constant . 

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties 
of the Parvaresh-Vardy code!  But general list-recovery does not take advantage of the 
special structure present in the MPC-in-the-head setting. 

•  Our work:  The bad challenge set structure present in a modification of the [IKOS07] 
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler 
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use 
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0
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Our Modification of MPC-in-the-Head

Commit once to the transcript . Not a 
parallel repetition!

τ

Each party’s view is now 
independently verifiable!

Directly compute NP Verification 
circuit. Avoids Karp reductions. 



A Coding-Theoretic Instantiation 
of Fiat-Shamir following [HLR21]



Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the 
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof: 

Consider an interactive proof for some NP language  that satisfies: 

• Completeness 
• -soundness against unbounded provers (statistical soundness) 
• Honest-verifier zero-knowledge (HVZK) 
• Public coin

L

negl

Amplifying Soundness via Parallel Repetition
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Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}
[CCH+19] “Bad Challenges” (there’s some response that fools  into accepting)V
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functions.
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PS19] also addresses the case of 

polynomially many bad challenges.
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Too many bad challenges for the 
techniques of [CCH+19, PS19]. 
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Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), r) : (𝖤𝗇𝖼𝗈𝖽𝖾(r))i ∈ Si}
[HLR21] This is exactly list recovery! 

Use a list-recoverable code! 

Enc



Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), r) : (𝖤𝗇𝖼𝗈𝖽𝖾(r))i ∈ Si}
Enc[HLR21] Use Parvaresh-Vardy code 

concatenated with a single random 
code.



Code Contenation

Algebraic Code
𝒞Alg : M → ℤt

Q

…… ……

Random
Code 𝒞r

Random
Code 𝒞r……

𝒞 : M → ℤn=mt
q

… t many

𝒞r : ℤQ → ℤm
q 𝒞r : ℤQ → ℤm

q



List-Recovery for Concatenated Codes
List-recovery for 
Algebraic Code 
𝒞Alg : M → ℤt

Q

List-recovery 
for Random 

Code 𝒞r

List-Recovery 
for Random 

Code 𝒞r
…

S1,1 S1,m…

S1 St

St,1 St,m

…

List of all messages  such 
that 

m
𝒞r(𝒞Alg(m)i)j ∈ Si,j



Fiat-Shamir from Coding Theory [HLR21]

[HLR21] This is a CI hash for the 
desired relation.

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

for 
O(k1+ε)

ε > 0Parvaresh-Vardy + 
Single Random Code



Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), r) : (𝖤𝗇𝖼𝗈𝖽𝖾(r))i ∈ Si}
EncGeneral list-recovery addresses 

product sets  where 
each  may differ. 

S1 × S2 × ⋯ × St
Si



Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), r) : (𝖤𝗇𝖼𝗈𝖽𝖾(r))i ∈ Si}
Enc

Is general list-recoverability necessary 
for the setting of MPC-in-the-Head?



Bad Challenge Structure of MPC-in-the-Head

Bad Challenge Set:





 

SCom(τ) × ⋯ × SCom(τ)

SCom(τ) = {i : 𝖵𝗂𝖾𝗐i consistent } ⊂ ℤq

For our MPC-in-the-head protocol, we 
have a product sets  for 

a single set , a much simpler 
structure.

S × S × ⋯ × S
S



Bad Challenge Structure of MPC-in-the-Head

Does this simpler bad challenge 
structure allow the usage of a 

derandomization technique both 
simpler and more efficient than 

general list-recoverability?

Bad Challenge Set:





 

SCom(τ) × ⋯ × SCom(τ)

SCom(τ) = {i : 𝖵𝗂𝖾𝗐i consistent } ⊂ ℤq



Recurrent List-Recovery

List-recovery 
for Random 

Code 𝒞r

List-Recovery 
for Random 

Code 𝒞r
…

S S…

S̃ S̃…

S S…

List-recovery for 
algebraic code 
𝒞Alg : M → ℤt

Q

List of all messages  such 
that 

m
𝒞r(𝒞Alg(m)i)j ∈ S

Same recurring 
set S ≜ SCom(τ)



Recurrent List-Recovery
List-recovery for Reed-

Solomon Code 
𝒞RS : M → ℤt

Q

List-recovery 
for Random 

Code 𝒞r

List-Recovery 
for Random 

Code 𝒞r
…

S S…

S̃ S̃…

S S…

List of all messages  such 
that 

m
𝒞r(𝒞RS(m)i)j ∈ S

Let’s try to use a 
simple algebraic 

code to 
instantiate 

recurrent list-
recovery!



Recurrent List-Recovery
List-recovery for Reed-

Solomon Code 
𝒞RS : M → ℤt

Q

List-recovery 
for Random 

Code 𝒞r

List-Recovery 
for Random 

Code 𝒞r
…

S S…

S̃ S̃…

S S…

List-recovery for a 
single random code 

 may result in an 
output set  that is 

too large for RS list-
recovery! 

For a fixed random 
code, this happens 
with non-negligible 

probability over 
Prover’s choice of S.

𝒞r
S̃

List of all messages  such 
that 

m
𝒞r(𝒞RS(m)i)j ∈ S



Recurrent List-Recovery
List-recovery for Reed-

Solomon Code 
𝒞RS : M → ℤt

Q

List-recovery 
for Random 

Code 𝒞r

List-Recovery 
for Random 

Code 𝒞r
…

S S…

S̃ S̃…

S S…

Reed-Solomon list-
decoding relies 
crucially on the 

polynomial 
reconstruction 

algorithm [Sud97, 
GS98] 

List of all messages  such 
that 

m
𝒞r(𝒞RS(m)i)j ∈ S



Recurrent List-Recovery
List-recovery for Reed-

Solomon Code 
𝒞RS : M → ℤt

Q

List-recovery 
for Random 

Code 𝒞r

List-Recovery 
for Random 

Code 𝒞r
…

S S…

S̃ S̃…

S S…

Polynomial reconstruction 
only relies on the 

aggregate list size 

 
t

∑
i=1

| S̃ | ≥ |S | ⋅ t

List of all messages  such 
that 

m
𝒞r(𝒞RS(m)i)j ∈ S



List-recovery for Reed-
Solomon Code 
𝒞RS : M → ℤt

Q

List-recovery 
for Random 
Code 𝒞r,1

List-Recovery 
for Random 
Code 𝒞r,t

…

S S…

S̃1 S̃t…

S S…

If we use multiple 
random codes, then 
while some output 
sets may be large, 

others may be small.

Aggregate Size Analysis
List of all messages  such 

that 
m

𝒞r(𝒞RS(m)i)j ∈ S



List-recovery 
for Random 
Code 𝒞r,1

…

S S…

S̃1 S̃t…

S S…

List-recovery for Reed-
Solomon Code 
𝒞RS : M → ℤt

Q

List-Recovery 
for Random 
Code 𝒞r,t

Aggregate Size Analysis

For  for 
,  we 

achieve 

  

with all but negligible 
probability.

|S | = α ⋅ q
α ∈ (0,1) q = Õ(k)

∑ | S̃i | ≤ Õ( |S |)

List of all messages  such 
that 

m
𝒞r(𝒞RS(m)i)j ∈ S



List-recovery 
for Random 
Code 𝒞r,1

…

S S…

S̃1 S̃t…

S S…

List-recovery for Reed-
Solomon Code 
𝒞RS : M → ℤt

Q

List-Recovery 
for Random 
Code 𝒞r,t

Aggregate Size Analysis

Polynomial 
reconstruction succeeds 
for every choice of the 

set  (of the appropriate 
size) with all but 

negligible probability.

S

List of all messages  such 
that 

m
𝒞r(𝒞RS(m)i)j ∈ S



Summary:

This is still a CI hash for the desired 
relation.

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

Õ(k)Reed-Solomon + 
Multiple Random Codes

Recurrent

We modify the MPC-in-the-head protocol [IKOS07] so that it has a bad challenge set 
amenable to recurrent list-recovery. We instantiate the code with a Reed-Solomon code 
concatenated with multiple random codes, and use aggregate size analysis to obtain a 

quasi-linear block length!



Thank you!



Appendix



Reed-Solomon Codes + Polynomial Reconstruction

Def [RS60]: A Reed-Solomon code  is parameterized by a base field size , 

a degree , a block length , and a set of values .  takes as input a 
polynomial  of degree  over , represented by its  coefficients, and outputs the vector of 

evaluations of  on each of the points .

𝒞λ : ℤk+1
Q → ℤt

Q Q = Q(λ)

k = k(λ) t = t(λ) Aλ = {α1, …, αt} 𝒞λ

p k ℤQ k + 1

(p(α1), …, p(αt)) p αi



Reed-Solomon Codes + Polynomial Reconstruction

Def [RS60]: A Reed-Solomon code  is parameterized by a base field size , 

a degree , a block length , and a set of values .  takes as input a 
polynomial  of degree  over , represented by its  coefficients, and outputs the vector of 

evaluations of  on each of the points .

𝒞λ : ℤk+1
Q → ℤt

Q Q = Q(λ)

k = k(λ) t = t(λ) Aλ = {α1, …, αt} 𝒞λ

p k ℤQ k + 1

(p(α1), …, p(αt)) p αi

Polynomial Reconstruction: 

• INPUT: Integers , . Distinct pairs , where .


• OUTPUT: A list of all polynomials  of degree at most , which satisfy

.

kp np {(αi, yi)}i∈[np] αi, yi ∈ ℤQ

p(X) ∈ ℤQ[X] kp

p(αi) = yi, ∀ i ∈ [np]


