Efficient NIZKs from LWE via Polynomial Reconstruction and "MPC in the Head"

Riddhi Ghosal

UCLA

Paul Lou UCLA

Amit Sahai UCLA

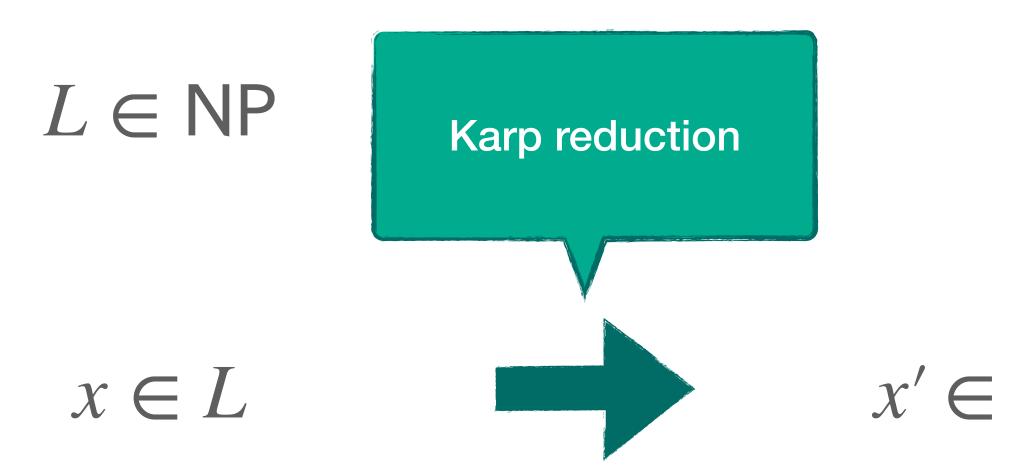
Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the Fiat-Shamir paradigm on a *parallel repetition* of a public-coin honest-verifier zeroknowledge interactive proof:

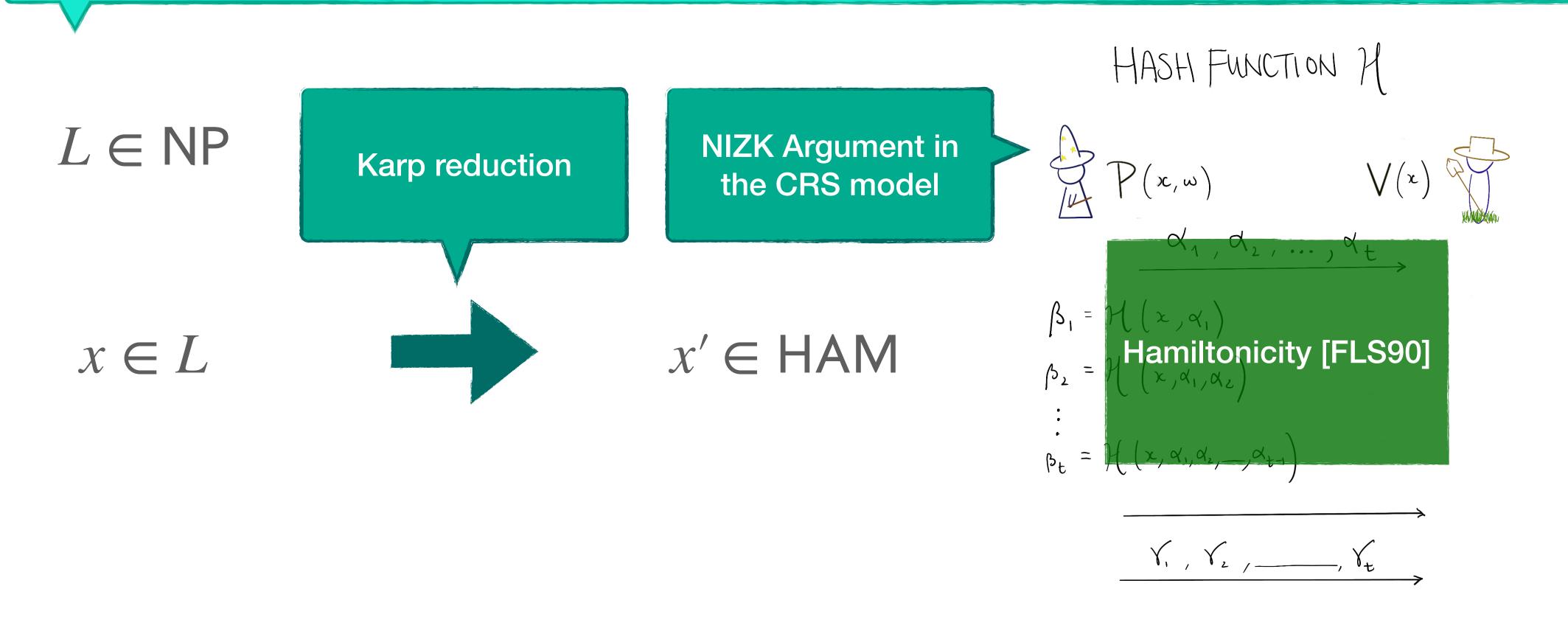
 $L \in \mathsf{NP}$

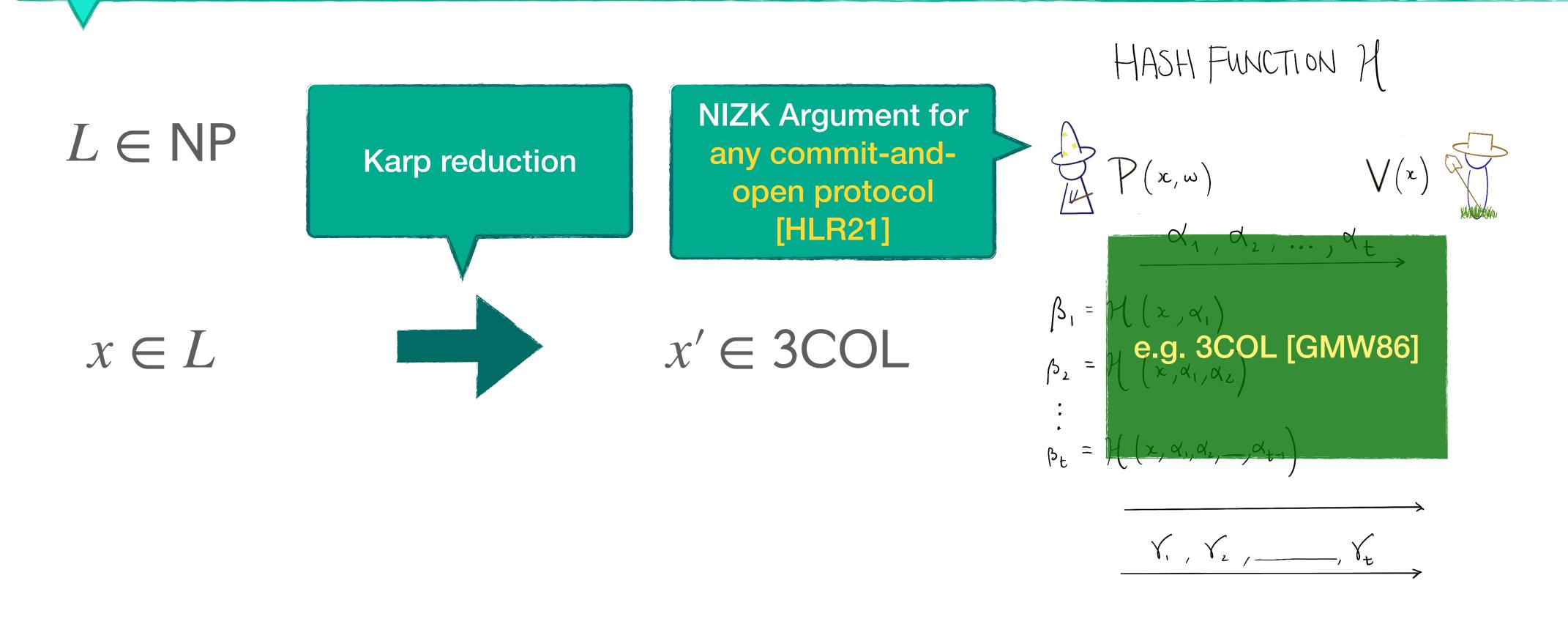
Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the Fiat-Shamir paradigm on a *parallel repetition* of a public-coin honest-verifier zeroknowledge interactive proof:

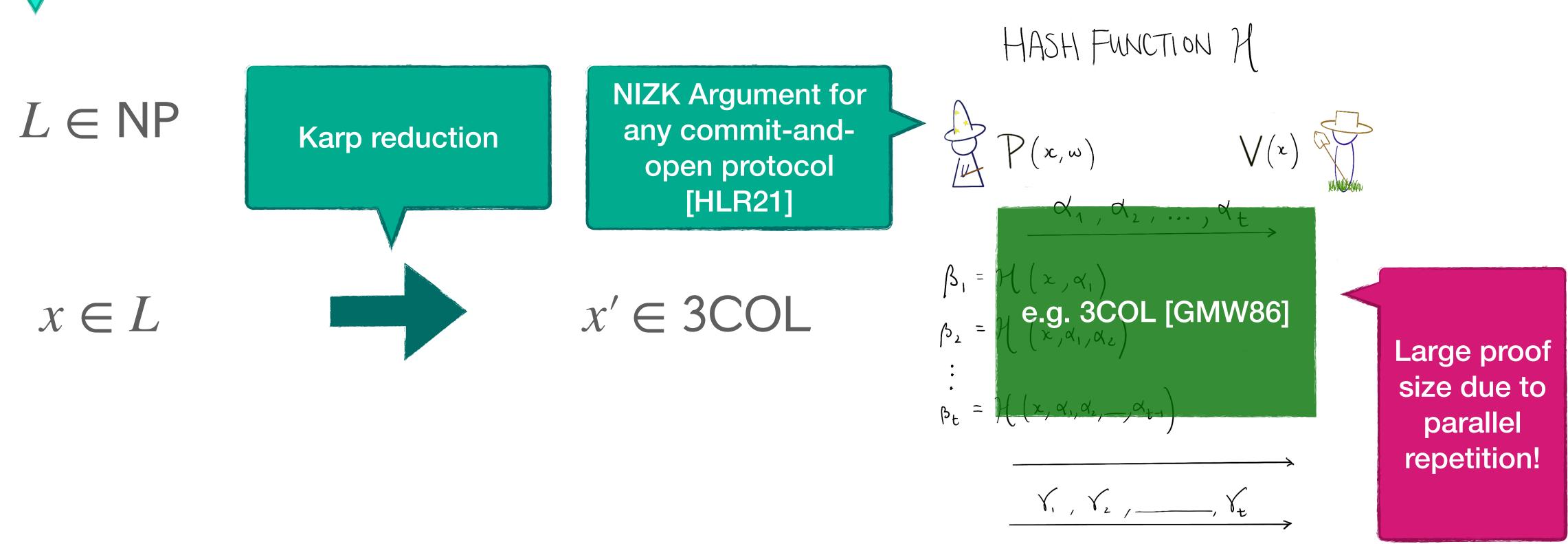
 $L \in \mathsf{NP}$

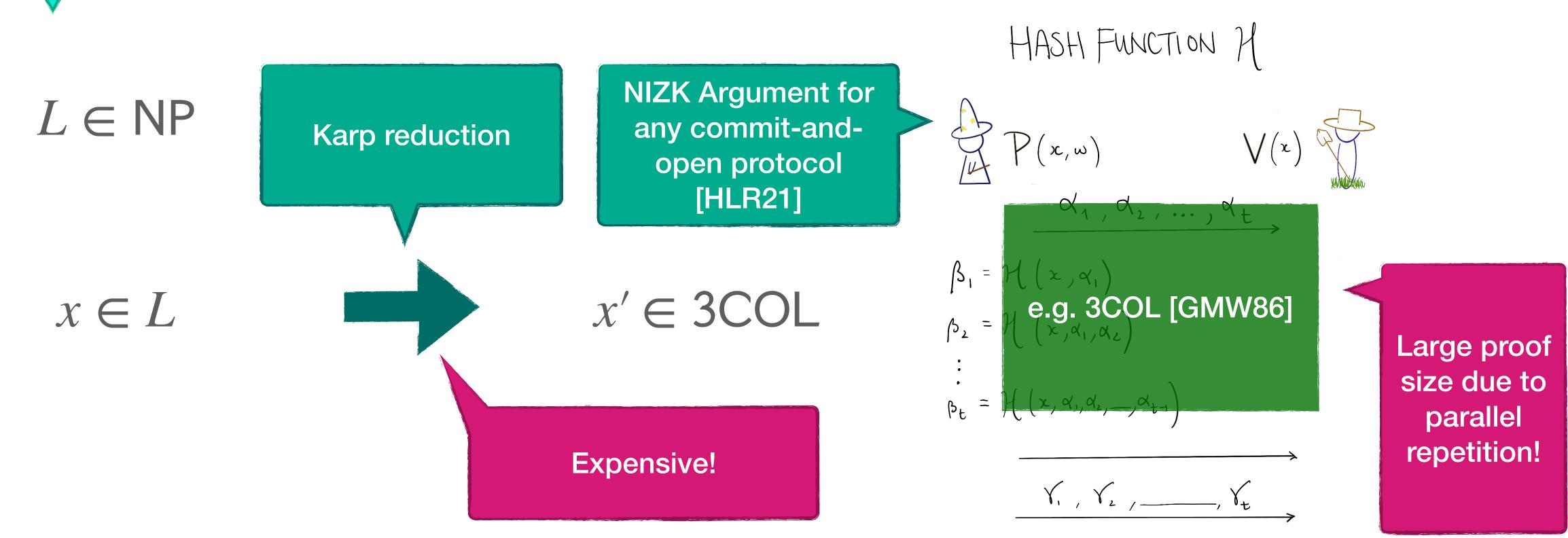
 $x \in L$



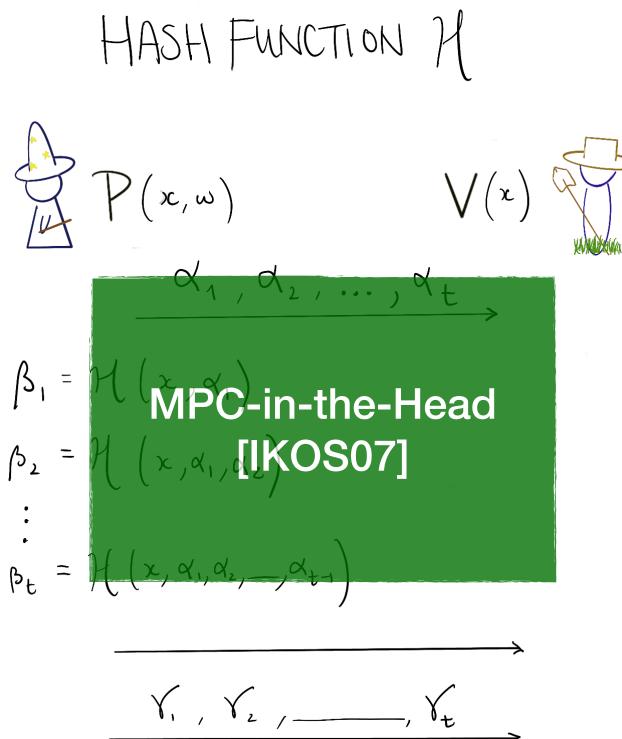








We give an *efficient* (smaller proof size) base NIZK construction for NP from LWE without parallel repetition and Karp reductions.

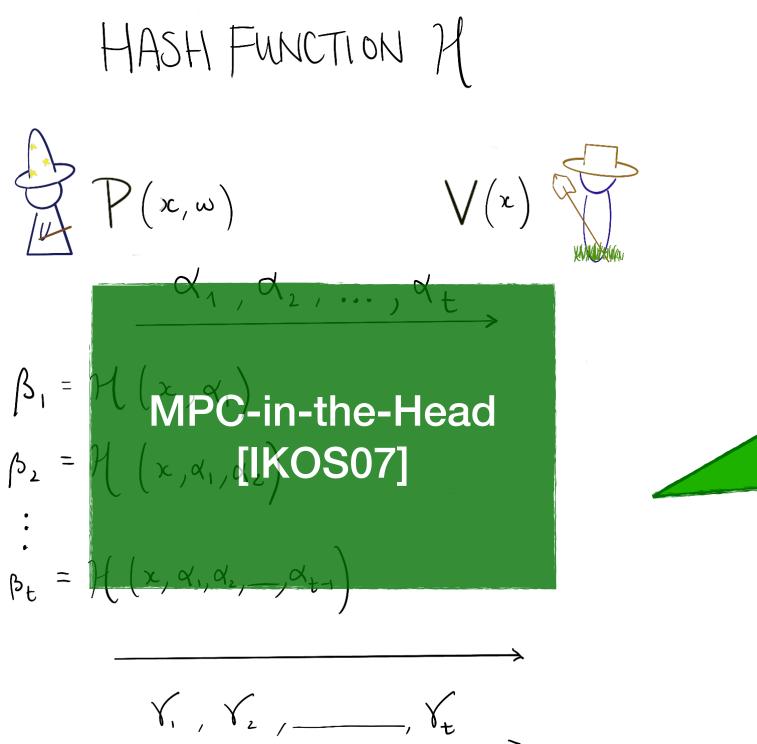


ß,

 $\beta_2 =$

Ξ

We give an *efficient* (smaller proof size) base NIZK construction for NP from LWE without parallel repetition and Karp reductions.



ß,

 $\beta_2 =$

Ξ

Allows us to translate work on efficient perfectly robust MPC protocols [DIK10, BGJK21, GPS21] to efficient NIZKs from LWE!

We give an *efficient* (smaller proof size) base NIZK construction for NP from LWE without parallel repetition and Karp reductions.

Assuming the hardness of LWE,

Main Theorem (informal)

We give an *efficient* (smaller proof size) base NIZK construction for NP from LWE without parallel repetition and Karp reductions.

Main Theorem (informal)

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of NP whose proof size is $O(|C| + q \cdot depth(C)) + poly(k)$ field elements in \mathbb{F} , where k is the security parameter, $q = \tilde{O}(k)$, $|\mathbb{F}| \ge 2q$, and C is an arithmetic circuit for the NP verification function.

We give an *efficient* (smaller proof size) <u>base</u> NIZK construction for NP from LWE *without* parallel repetition and Karp reductions.

Main Theorem (informal)

[GGI+15] Can use FHE to bootstrap an underlying NIZK to one with proof size |w| + poly(k) bits.

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of NP whose proof size is $O(|C| + q \cdot depth(C)) + poly(k)$ field elements in F, where k is the security parameter, $q = \tilde{O}(k)$, $|\mathbb{F}| \ge 2q$, and C is an arithmetic circuit for the NP verification function.

 [HLR21]'s coding theoretic approach to instantiating Fiat-Shamir: Block size of listrecoverable error-correcting code determines efficiency.

 [HLR21]'s coding theoretic approach to instantiating Fiat-Shamir: Block size of listrecoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of $O(k^{1+\epsilon})$ for any small constant $\epsilon > 0$.

 [HLR21]'s coding theoretic approach to instantiating Fiat-Shamir: Block size of listrecoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of $O(k^{1+\epsilon})$ for any small constant $\epsilon > 0$.

Can we generically apply this to MPC-in-the-head?

 [HLR21]'s coding theoretic approach to instantiating Fiat-Shamir: Block size of listrecoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of $O(k^{1+\epsilon})$ for any small constant $\epsilon > 0$.

 Can we generically apply this to MPC-in-the-head? Yes, using very specific properties of the Parvaresh-Vardy code!

 [HLR21]'s coding theoretic approach to instantiating Fiat-Shamir: Block size of listrecoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of $O(k^{1+\epsilon})$ for any small constant $\epsilon > 0$.

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties of the Parvaresh-Vardy code! *But* general list-recovery does not take advantage of the special structure present in the MPC-in-the-head setting.

• [HLR21]'s coding theoretic approach to instantiating Fiat-Shamir: Block size of listrecoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of $O(k^{1+\epsilon})$ for any small constant $\epsilon > 0$.

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the special structure present in the MPC-in-the-head setting.

We show that this yields less efficient proofs.

 [HLR21]'s coding theoretic approach to instantiating Fiat-Shamir: Block size of listrecoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of $O(k^{1+\epsilon})$ for any small constant $\epsilon > 0$.

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties of the Parvaresh-Vardy code! *But* general list-recovery does not take advantage of the special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07] protocol only needs *recurrent* list-recovery.

• [HLR21]'s coding theoretic approach to instantiating Fiat-Shamir: Block size of listrecoverable error-correcting code determines efficiency.

- $O(k^{1+\epsilon})$ for any small constant $\epsilon > 0$.
- special structure present in the MPC-in-the-head setting.

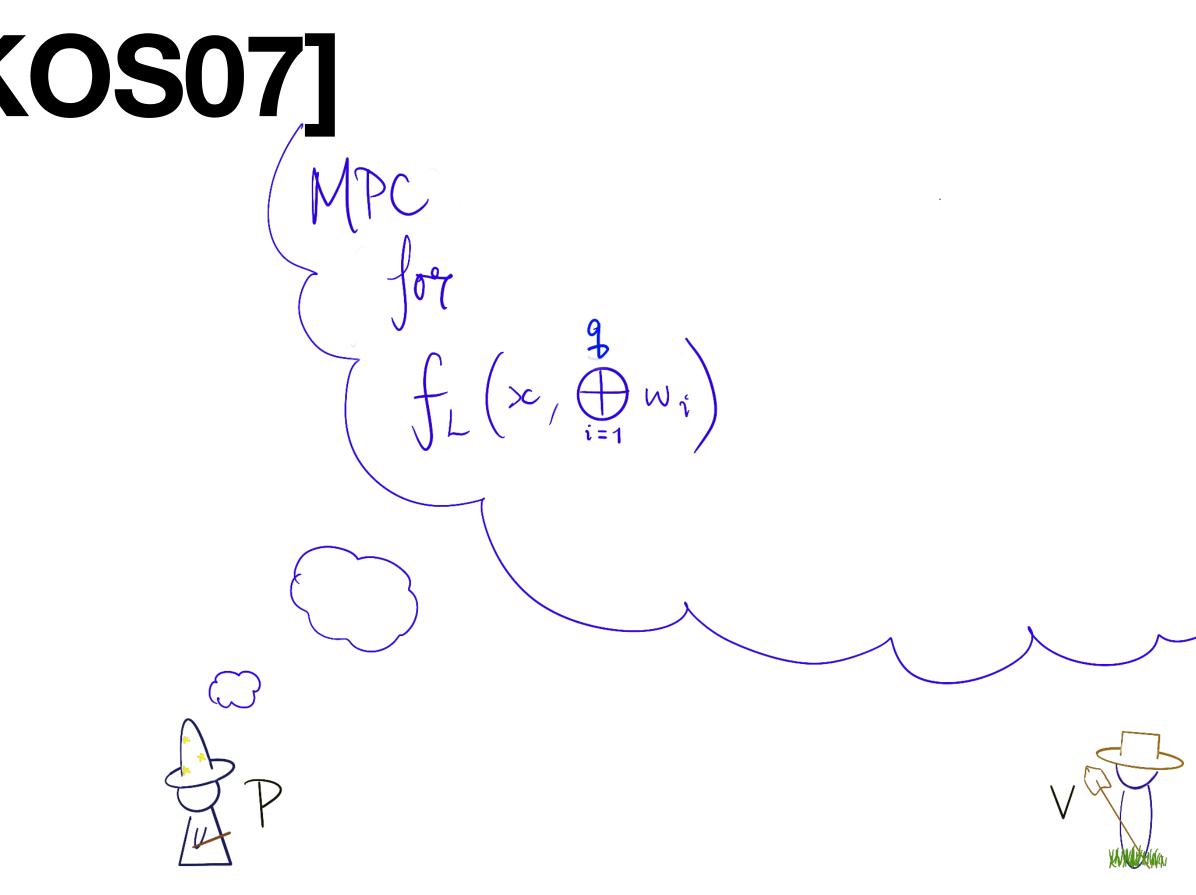
• Parvaresh-Vardy code concatenated with a single random code achieves block-size of

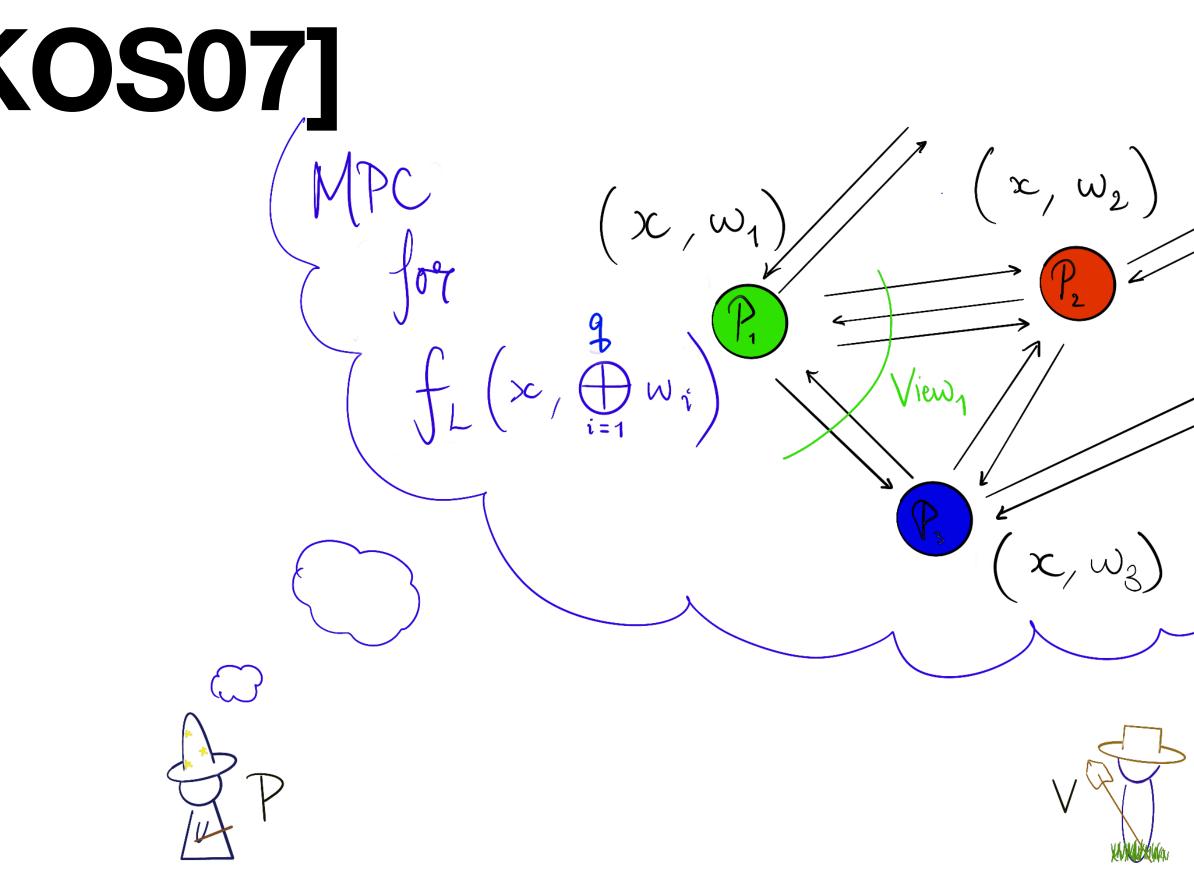
• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the

Our work: The bad challenge set structure present in a modification of the [IKOS07] protocol only needs *recurrent* list-recovery. Therefore, we can use *qualitatively simpler* codes (Reed-Solomon codes concatenated with *multiple* random codes) and directly use polynomial reconstruction [Sud97, GS98] to achieve an improved block size of O(k).

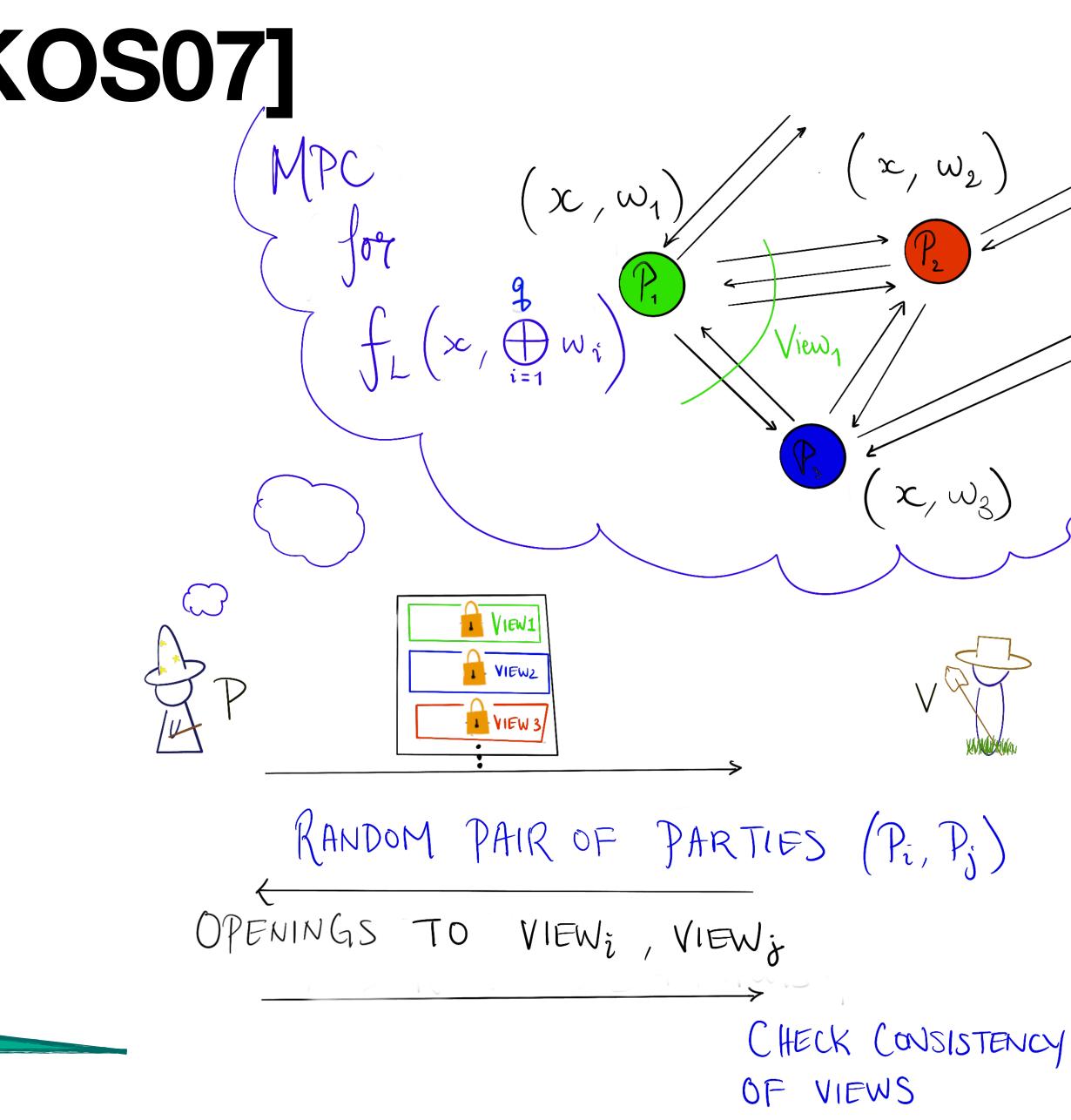
P

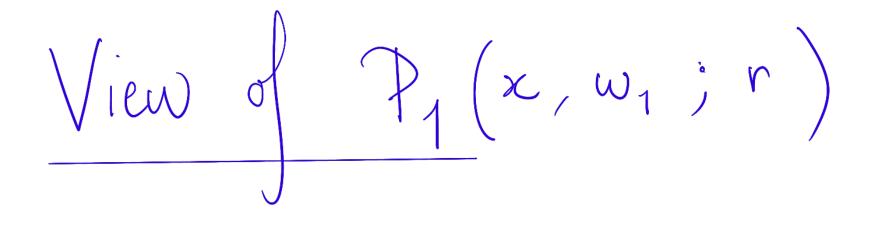
V KINKIKA





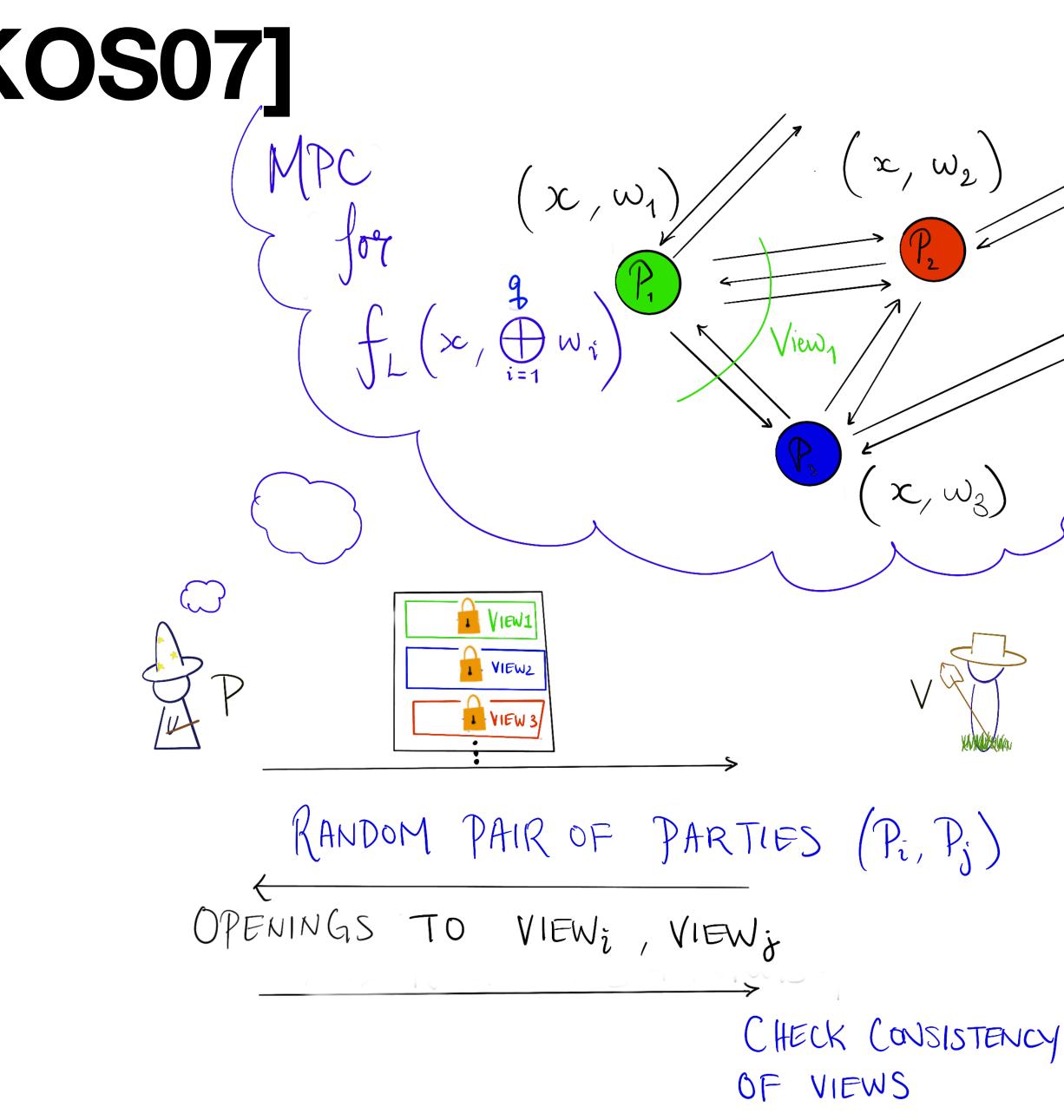
Black-box use of the MPC protocol!

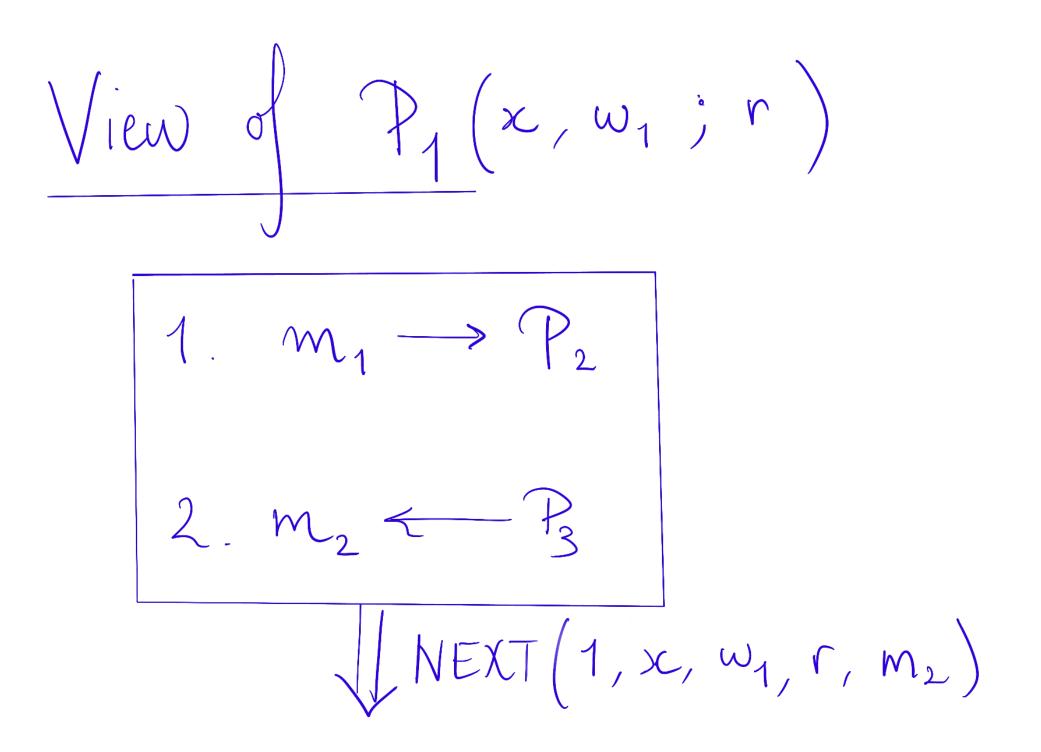


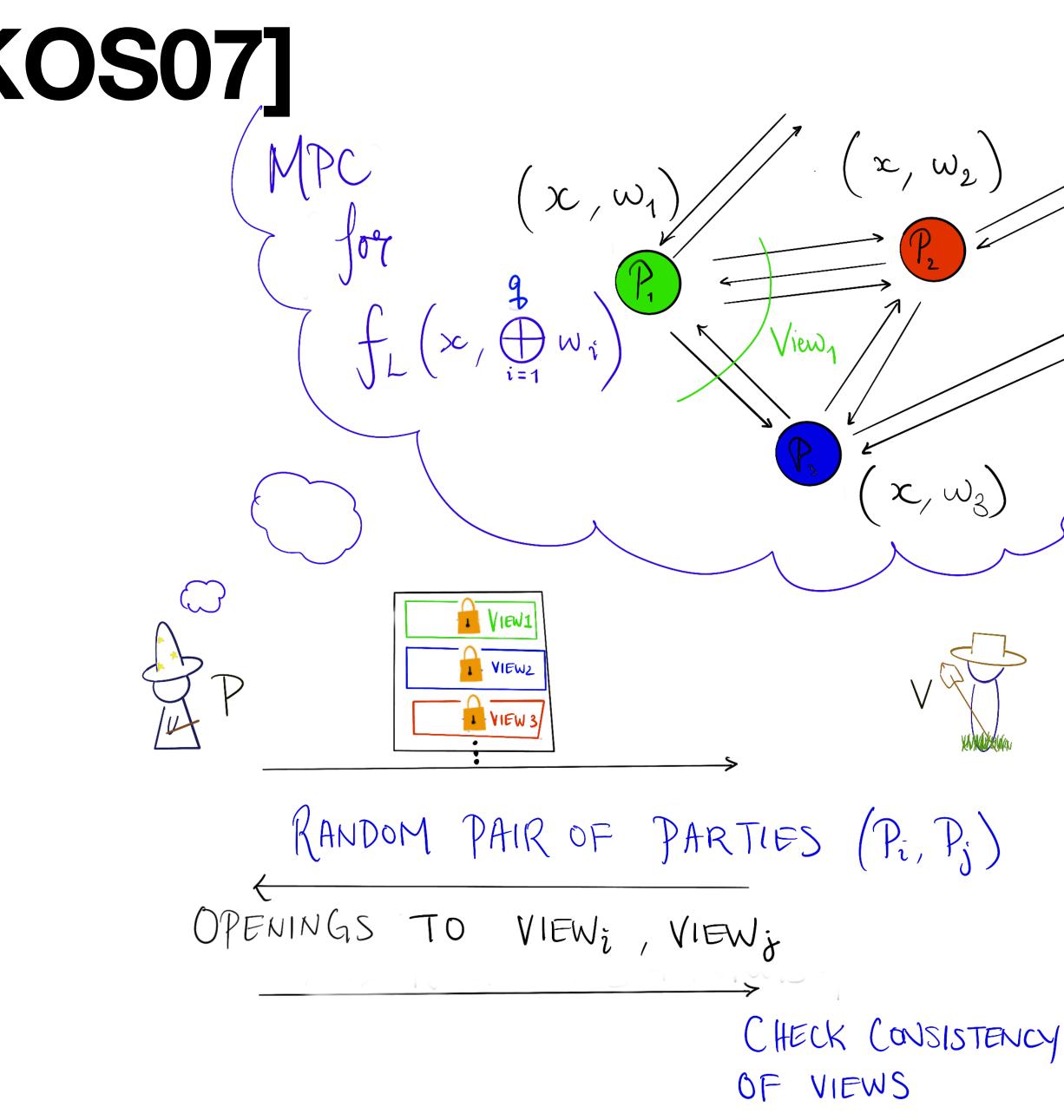


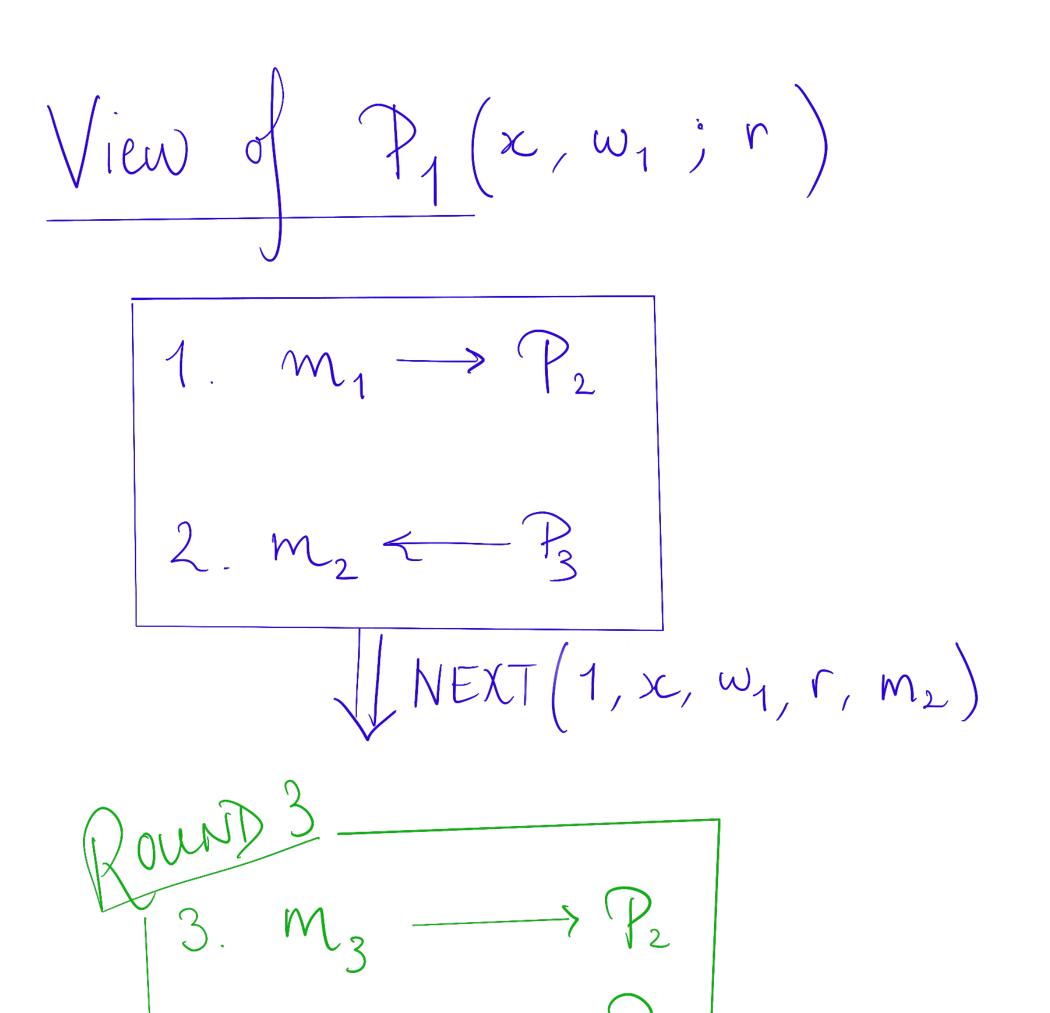
 $1. \quad \mathcal{M}_1 \longrightarrow (\mathcal{P}_2)$

 $2.m, \leftarrow P_{2}$



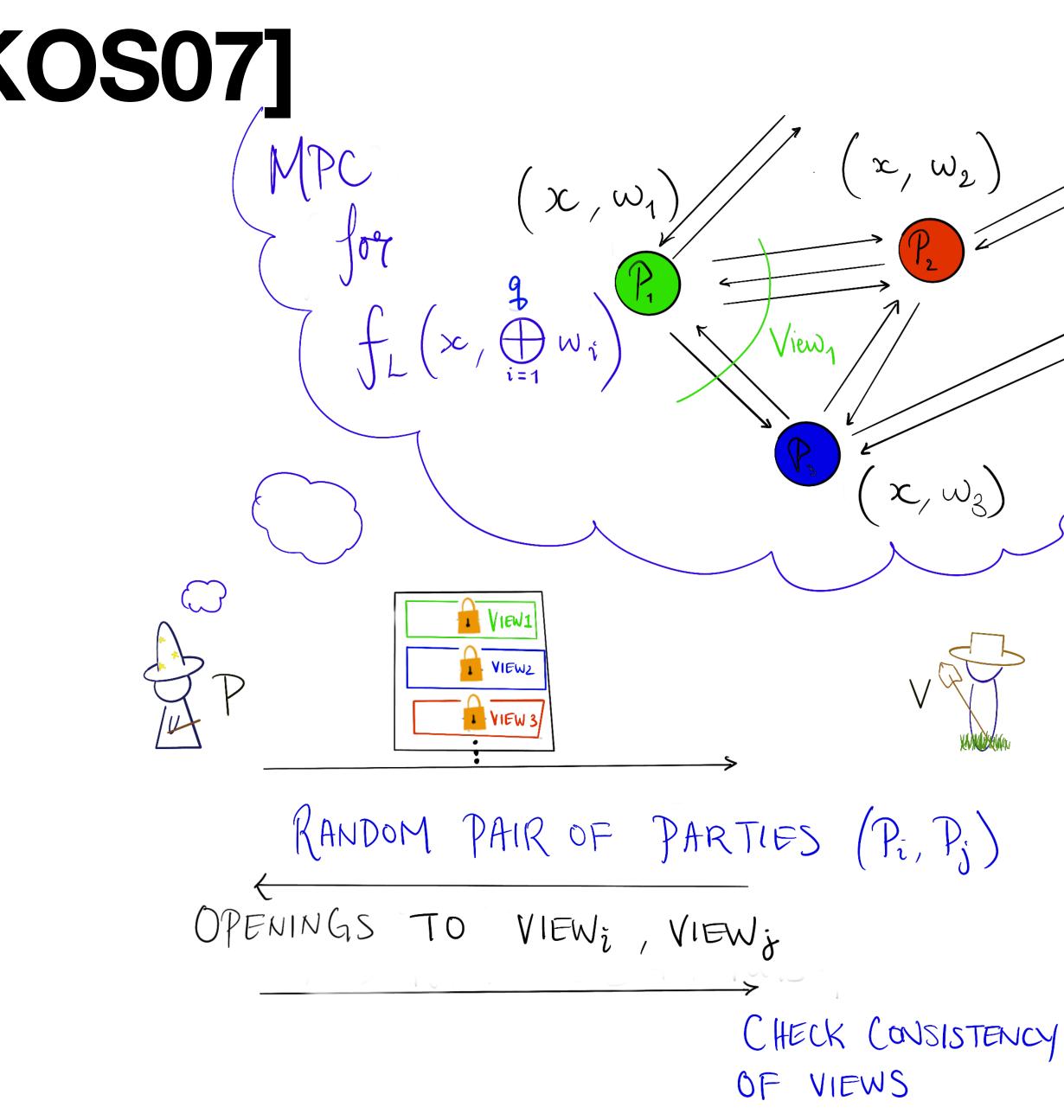




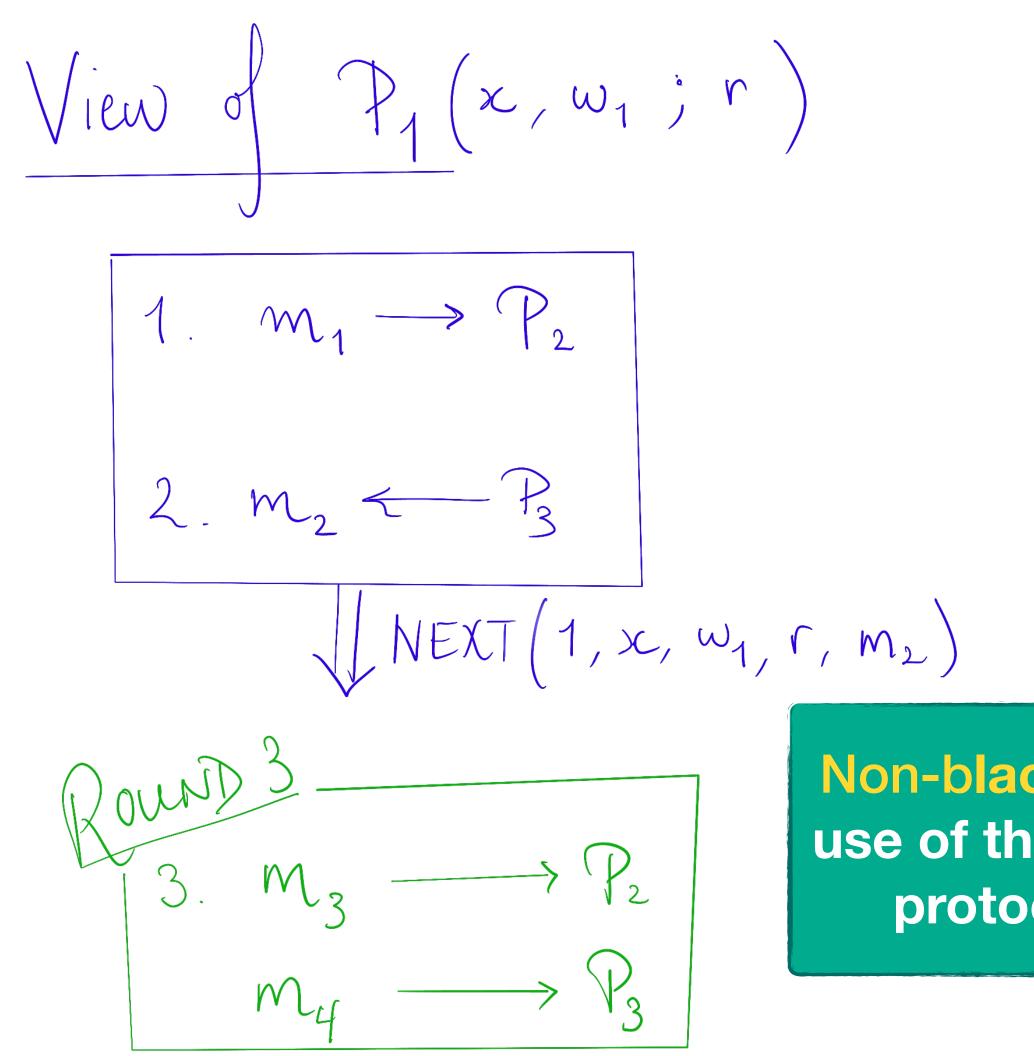


12

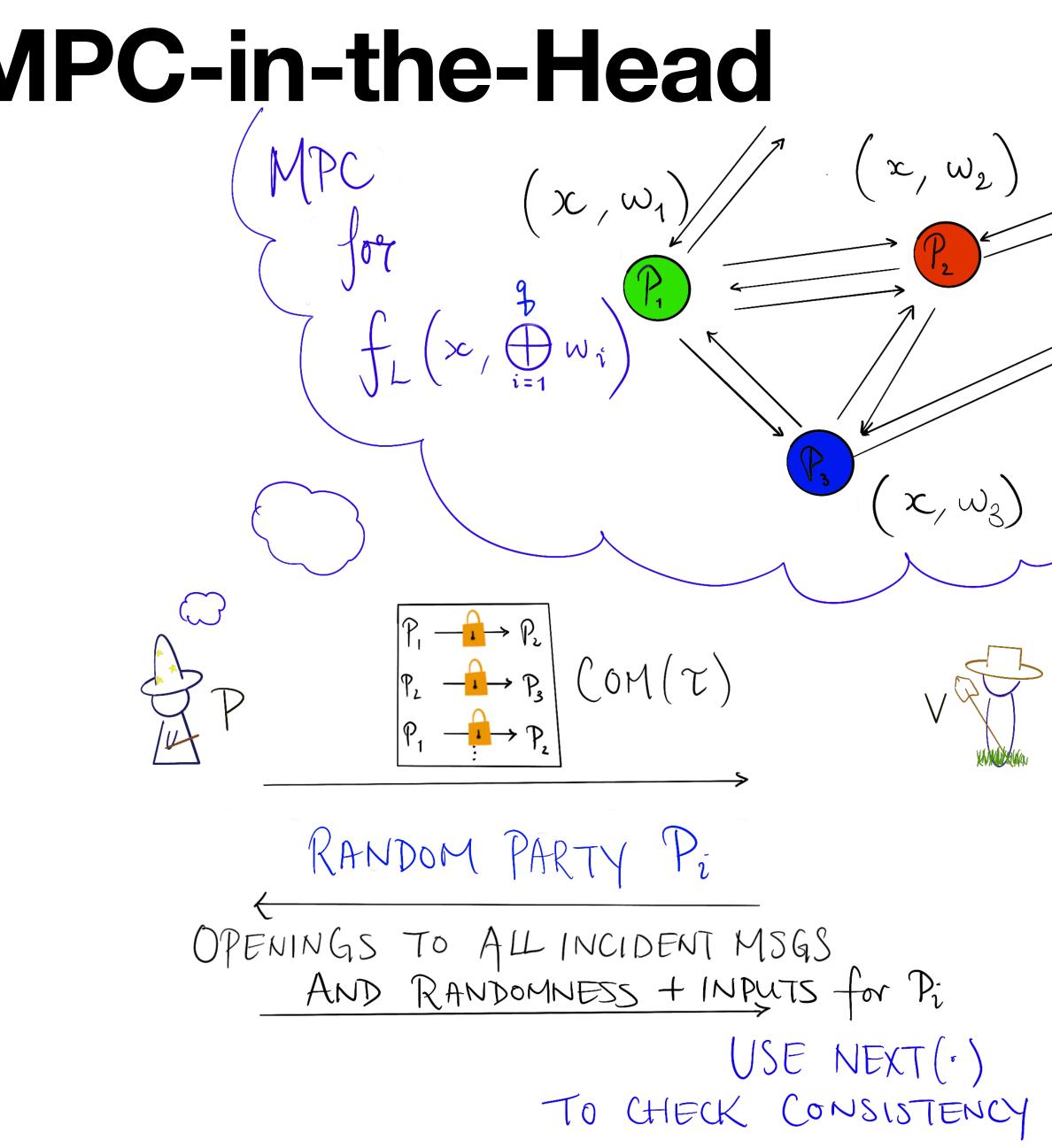
ML



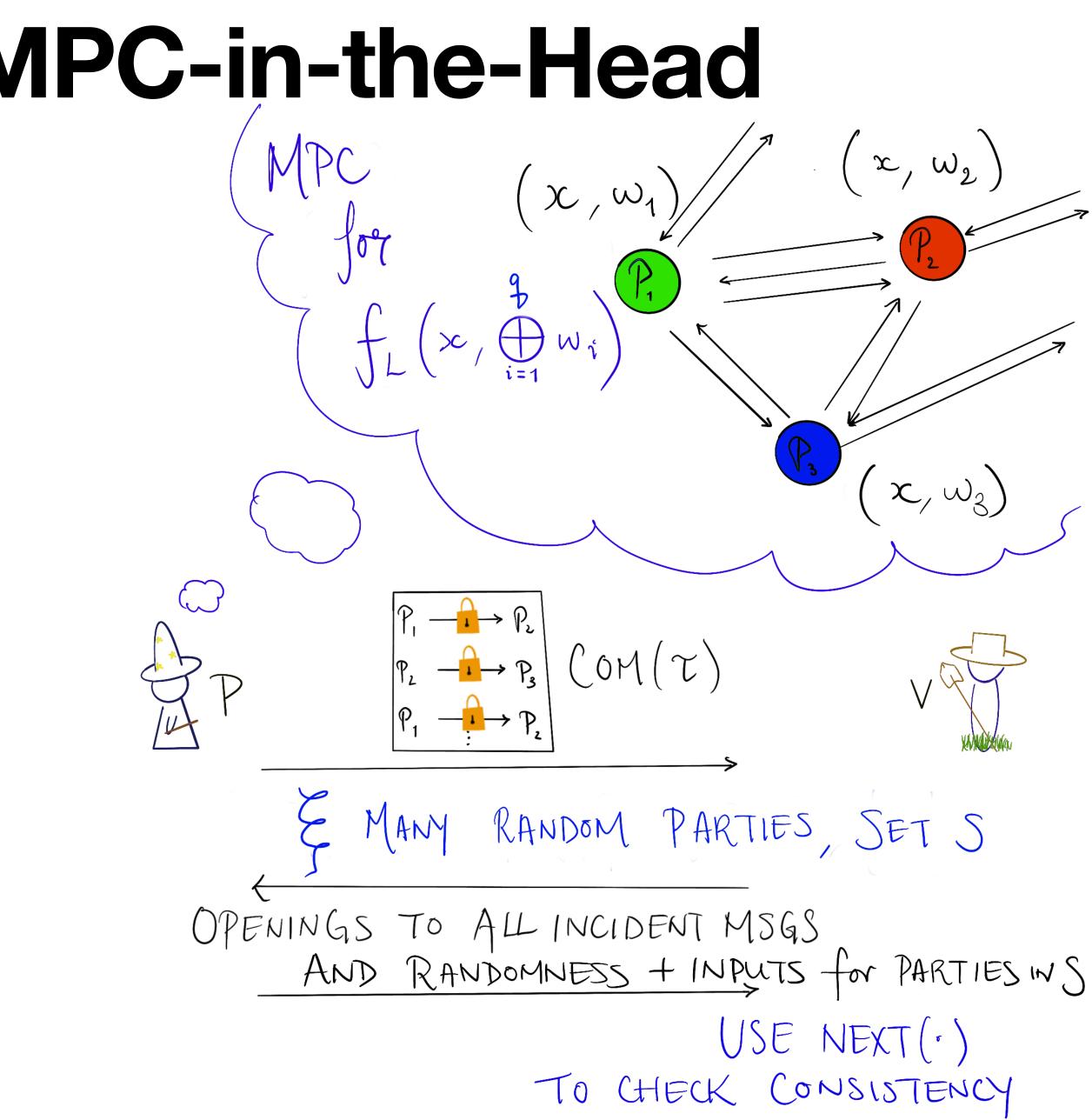
Our Modification of N



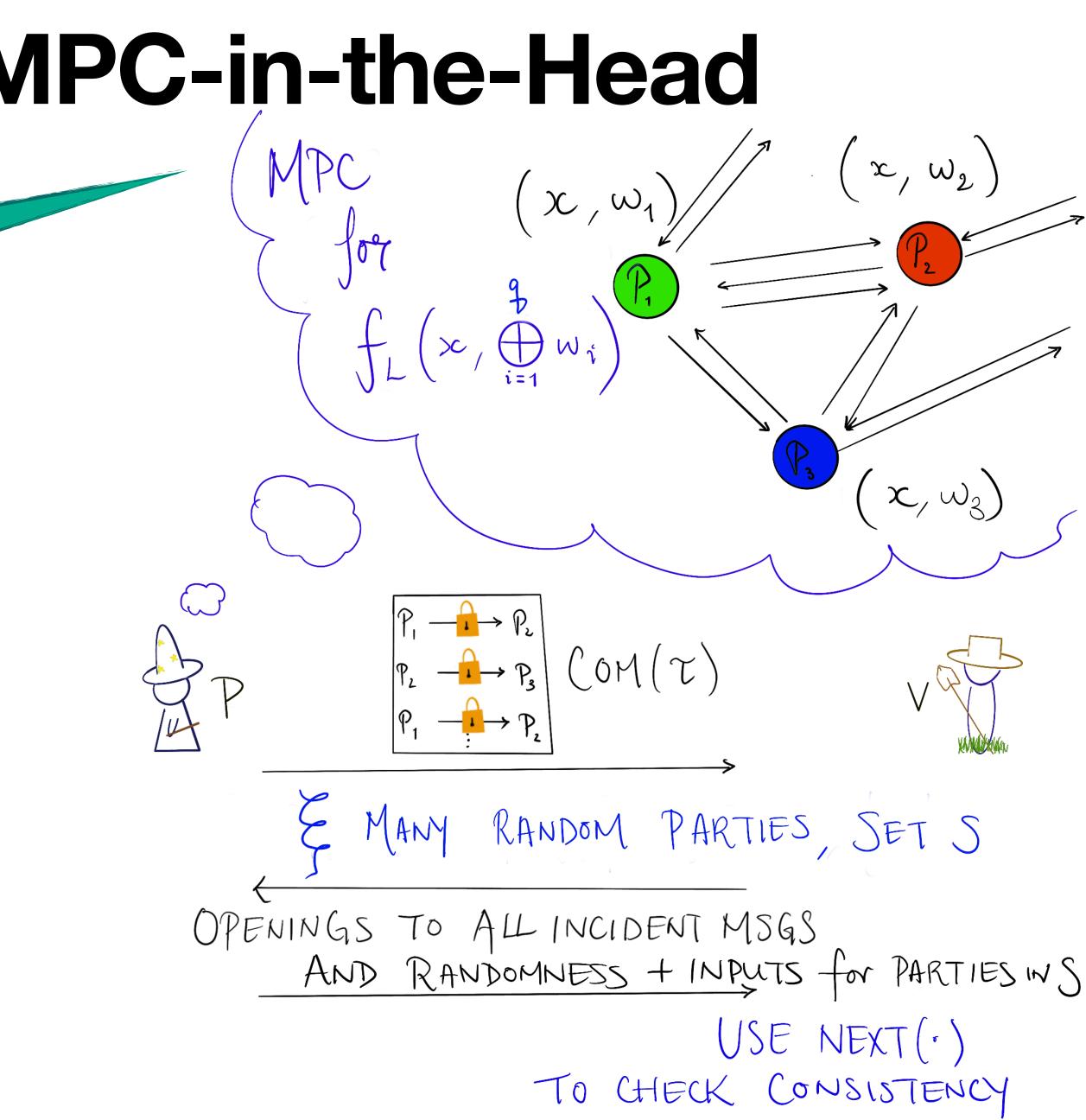
NPC	-in-the-Head	
	$ \begin{array}{c} MPC \\ for \\ f_{1}(x, w_{1}) \\ f_{2}(x, w_{1}) \\ f_{3}(x, w_{1}) \\ f_{4}(x, w_{1}) \\ f_{5}(x, w_{1}) \\ f_{5}(x, w_{1}) \\ f_{6}(x, w_{1}) \\ f_{6}(x, w_{1}) \\ f_{7}(x, w$	(x, w_2) P_2
		$(\mathbf{x}, \boldsymbol{\omega}_{g})$
	$P_{1} \xrightarrow{1} P_{2}$ $P_{2} \xrightarrow{1} P_{3}$ $P_{1} \xrightarrow{1} P_{2}$ $P_{1} \xrightarrow{1} P_{2}$ $P_{1} \xrightarrow{1} P_{2}$	
ck-box	RANDOM PARTY Pi	
e MPC col!	OPENINGS TO ALL INCIDENT MSGS AND RANDOMNESS + INPUTS	•
	TO CHECK CO	NEXT(·) NSISTENCY







Directly compute NP Verification circuit. Avoids Karp reductions.



Directly compute NP Verification circuit. Avoids Karp reductions.

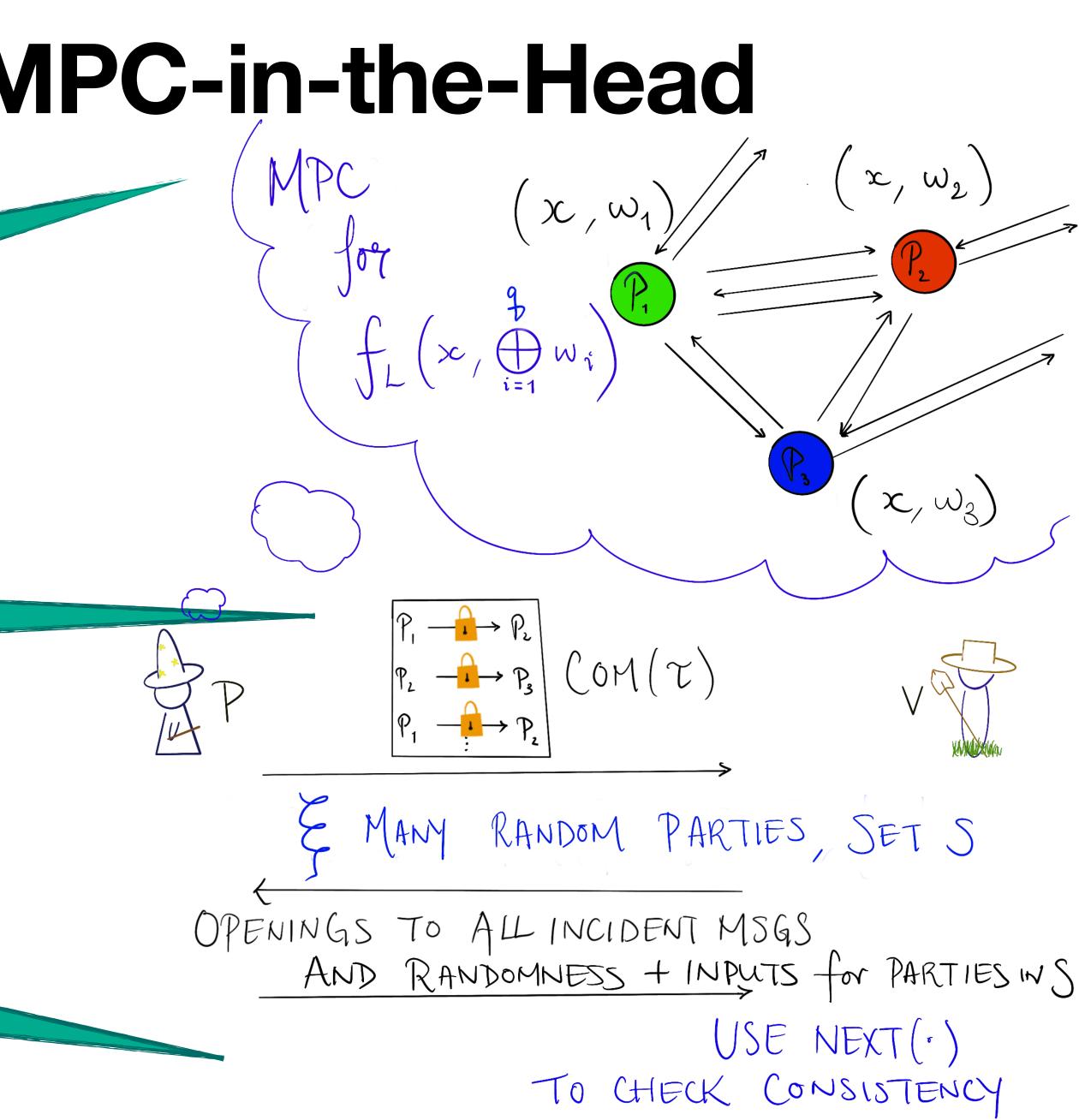
Commit once to the transcript τ . Not a parallel repetition!



Directly compute NP Verification circuit. Avoids Karp reductions.

Commit once to the transcript τ . Not a parallel repetition!

> Each party's view is now independently verifiable!



A Coding-Theoretic Instantiation of Fiat-Shamir following [HLR21]

Amplifying Soundness via Parallel Repetition

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the Fiat-Shamir paradigm on a *parallel repetition* of a public-coin honest-verifier zeroknowledge interactive proof:

 $\alpha_1, \alpha_2, \ldots, \alpha_t$

 $\beta_1, \beta_2, \ldots, \beta_t$

 $Y_1, Y_2, \ldots, Y_t \rightarrow$

Consider an interactive proof for some NP language L that satisfies:

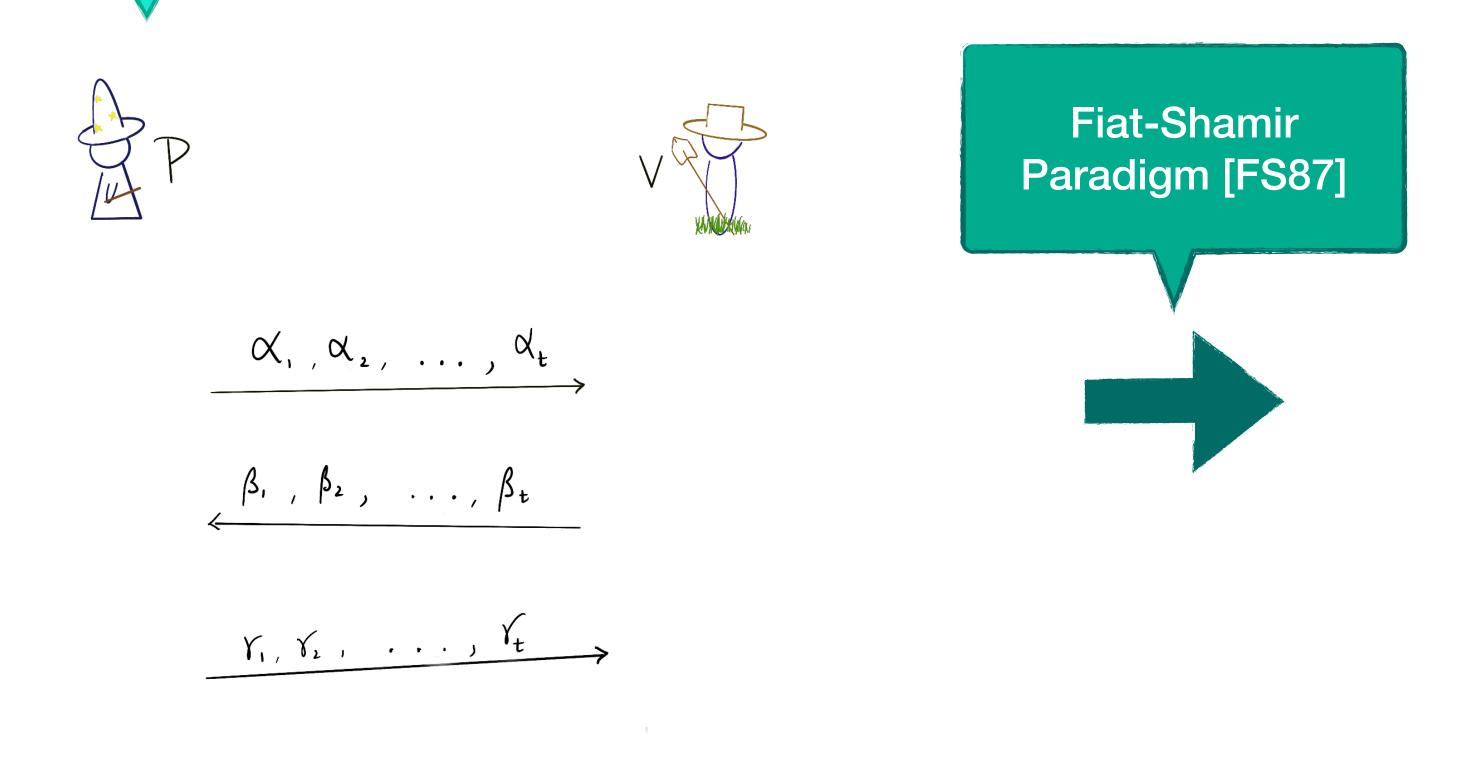
- Completeness

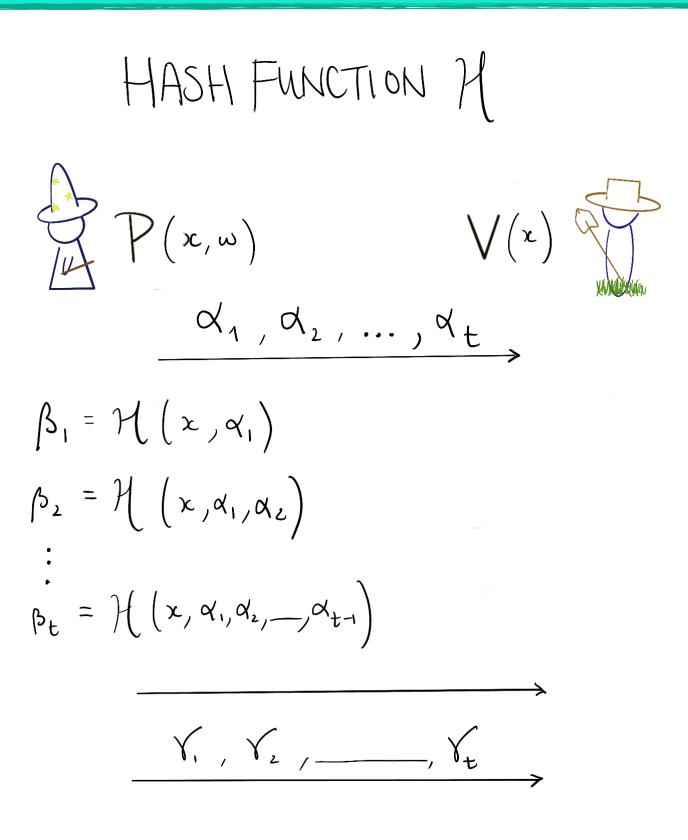
- Public coin

• *negl*-soundness against unbounded provers (statistical soundness) Honest-verifier zero-knowledge (HVZK)

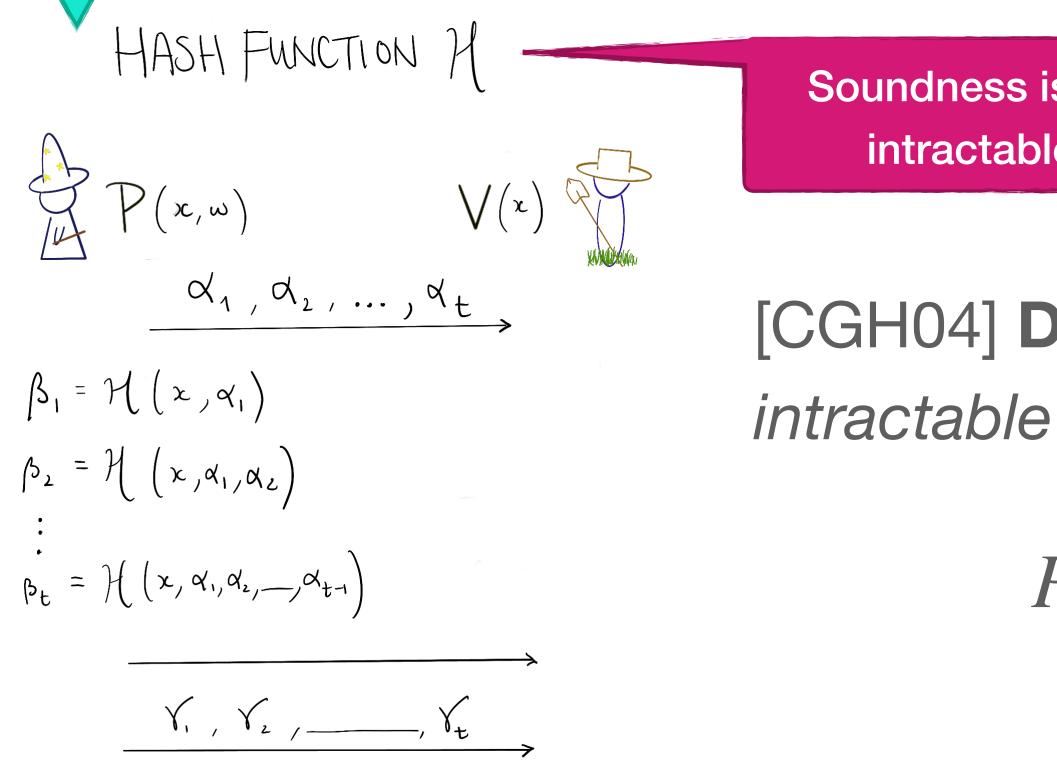
Fiat-Shamir Paradigm [FS87]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the Fiat-Shamir paradigm on a *parallel repetition* of a public-coin honest-verifier zeroknowledge interactive proof:





Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the Fiat-Shamir paradigm on a *parallel repetition* of a public-coin honest-verifier zeroknowledge interactive proof:

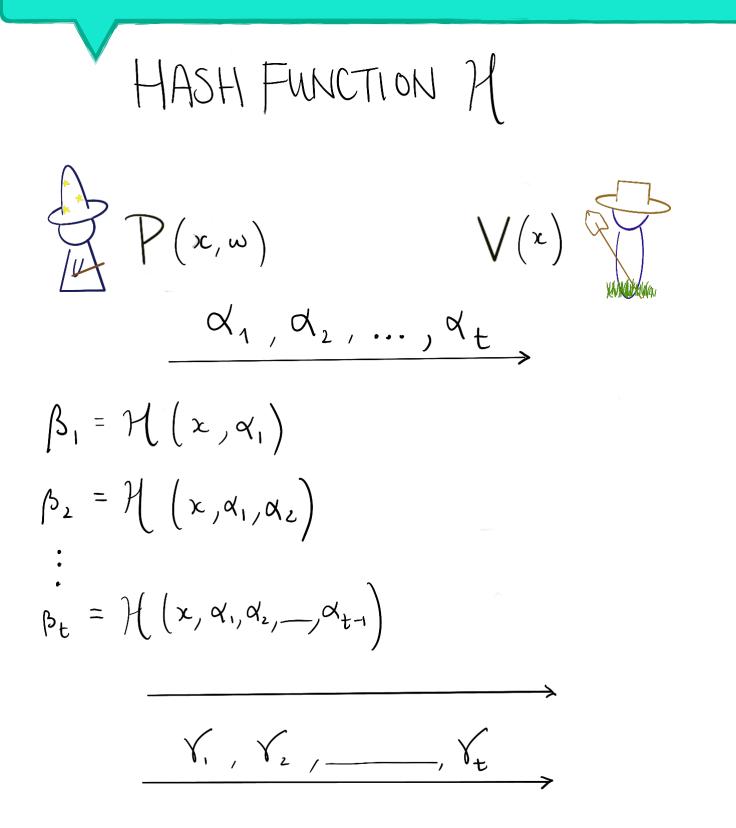


Soundness is preserved if H is sampled from a correlation intractable hash family for an appropriate relation R.

[CGH04] **Def'n**: A hash family \mathcal{H} is correlation *intractable* (CI) for a sparse relation R if for all PPT \mathcal{A}

$$\Pr_{h \leftarrow \mathscr{H}} \left[(x, h(x)) \in R \right] = \operatorname{negl}_{x \leftarrow \mathscr{A}(h)}$$

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the Fiat-Shamir paradigm on a *parallel repetition* of a public-coin honest-verifier zeroknowledge interactive proof:

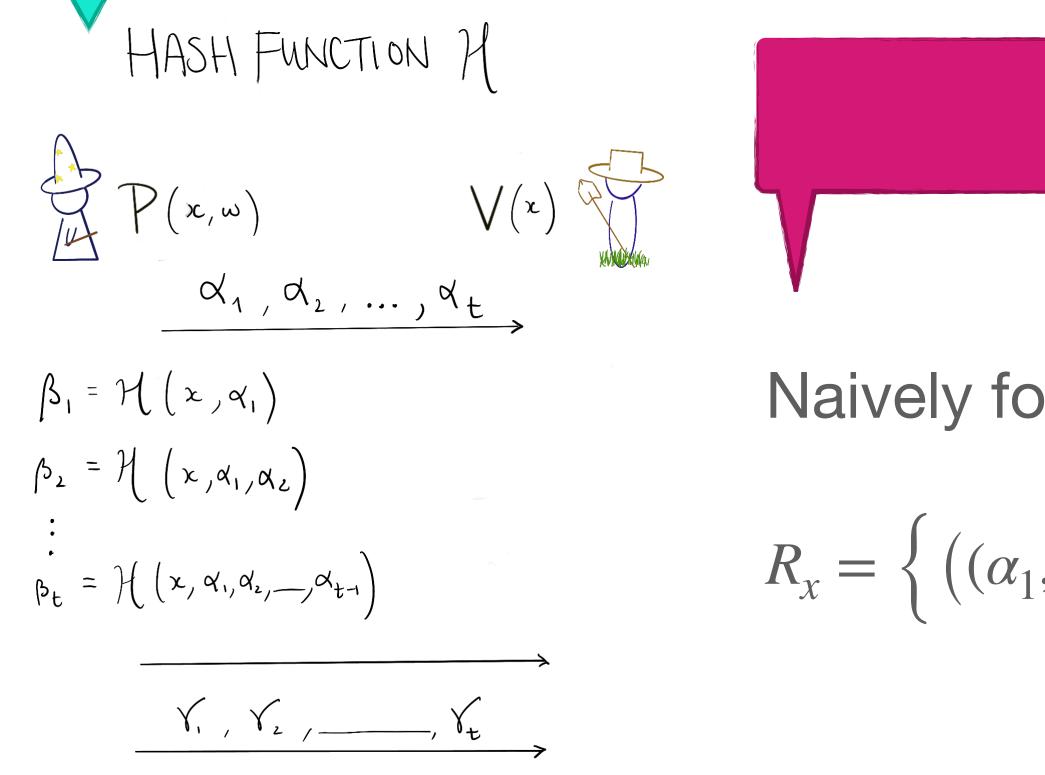


[CGH04] **Def'n**: A hash family \mathcal{H} is correlation *intractable* (CI) for a sparse relation R if for all PPT \mathcal{A}

What relation do we consider?

$$\Pr_{h \leftarrow \mathscr{H}} \left[(x, h(x)) \in R \right] = \operatorname{negl}_{x \leftarrow \mathscr{A}(h)}$$

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the Fiat-Shamir paradigm on a *parallel repetition* of a public-coin honest-verifier zeroknowledge interactive proof:

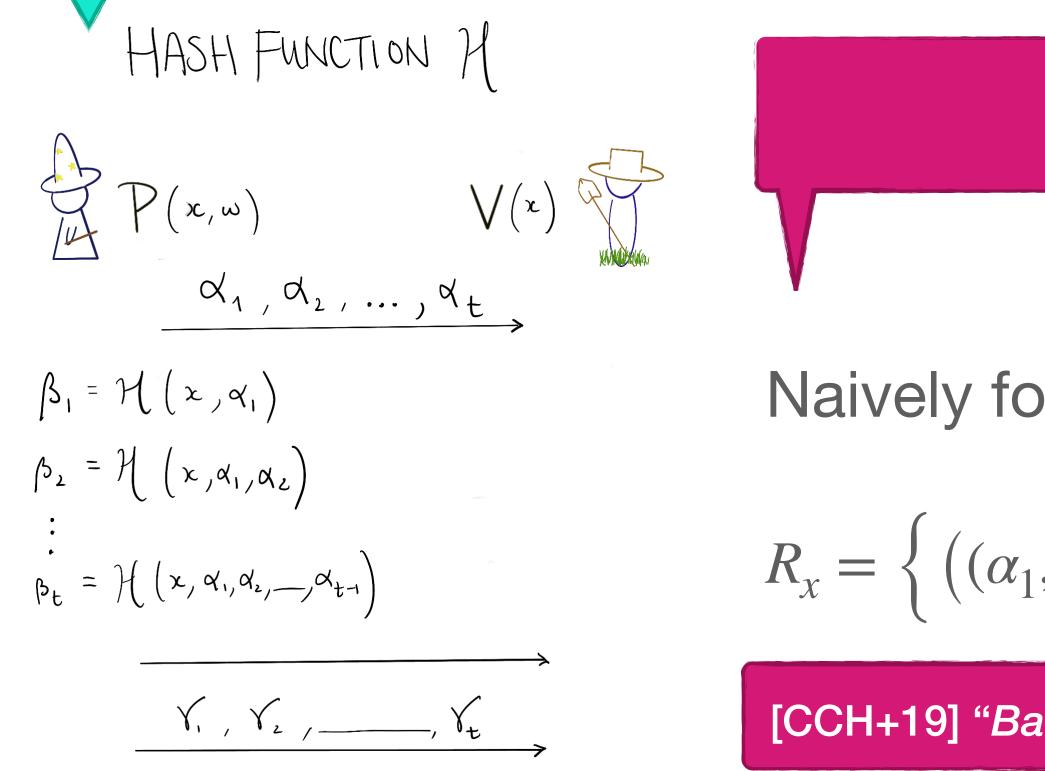


What relation do we consider?

Naively for a statement $x \notin L$:

 $R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma}) = 1 \right\}$

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the Fiat-Shamir paradigm on a *parallel repetition* of a public-coin honest-verifier zeroknowledge interactive proof:



What relation do we consider?

Naively for a statement $x \notin L$:

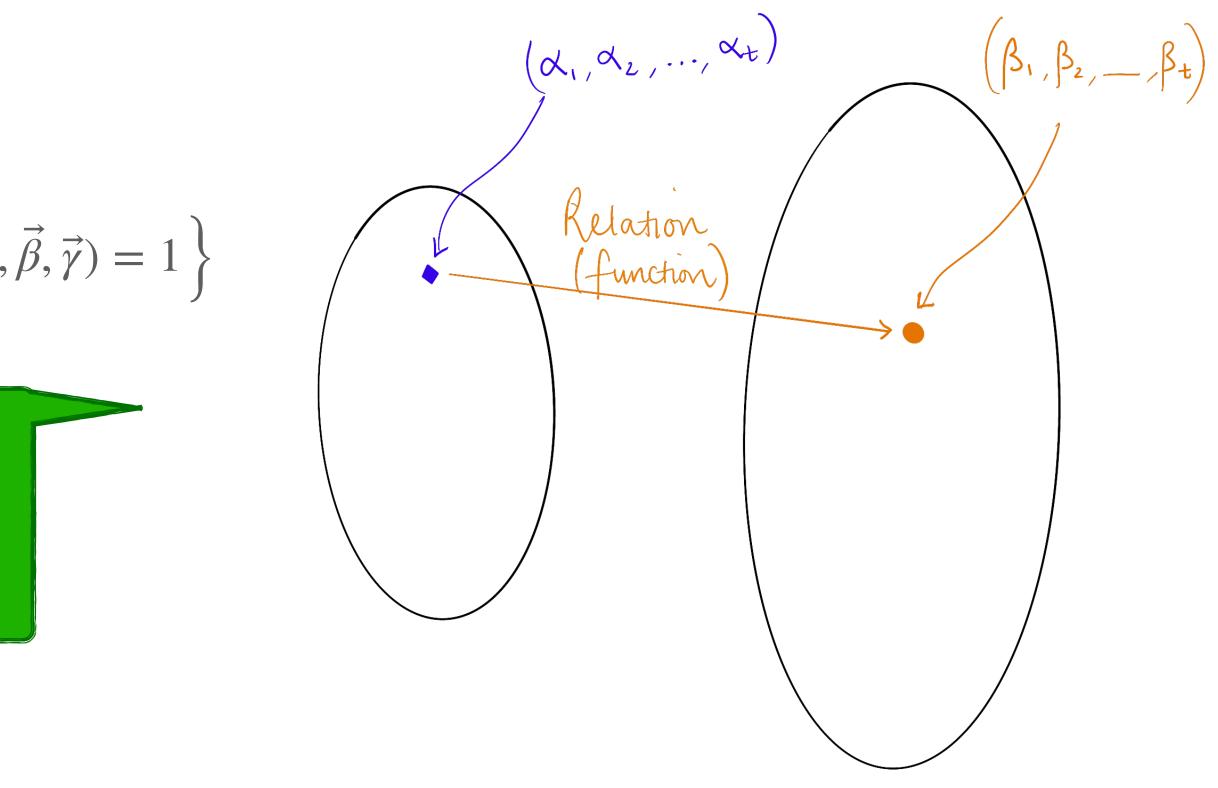
 $R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma}) = 1 \right\}$

[CCH+19] "Bad Challenges" (there's some response that fools V into accepting)

For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

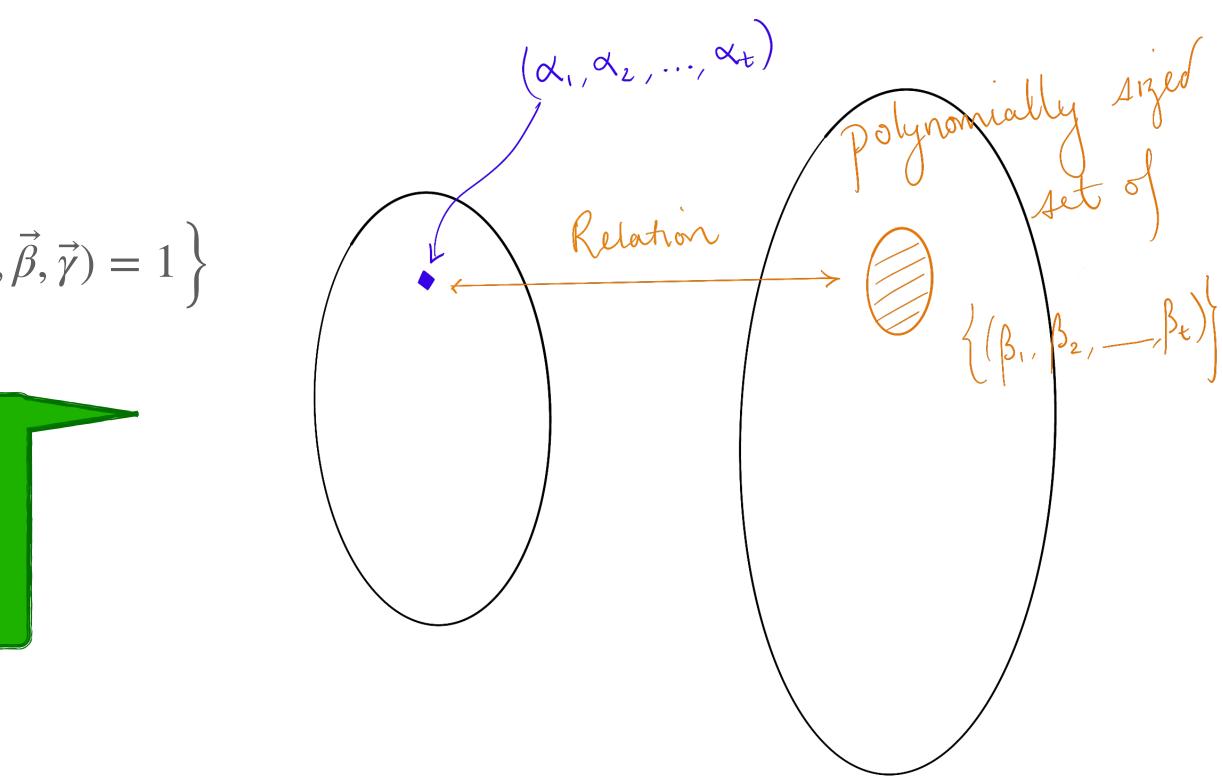
[PS19] addresses the case of functions.



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

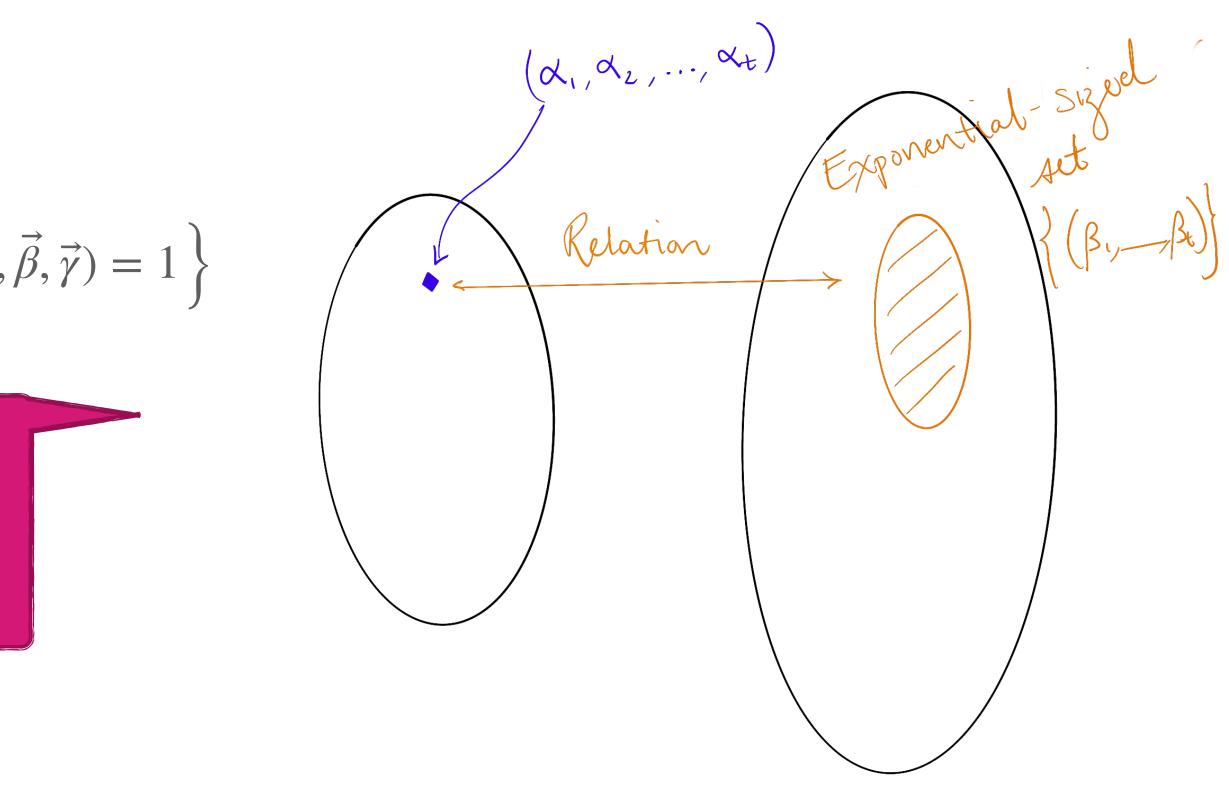
By a guessing reduction, [CCH+19, PS19] also addresses the case of polynomially many bad challenges.



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

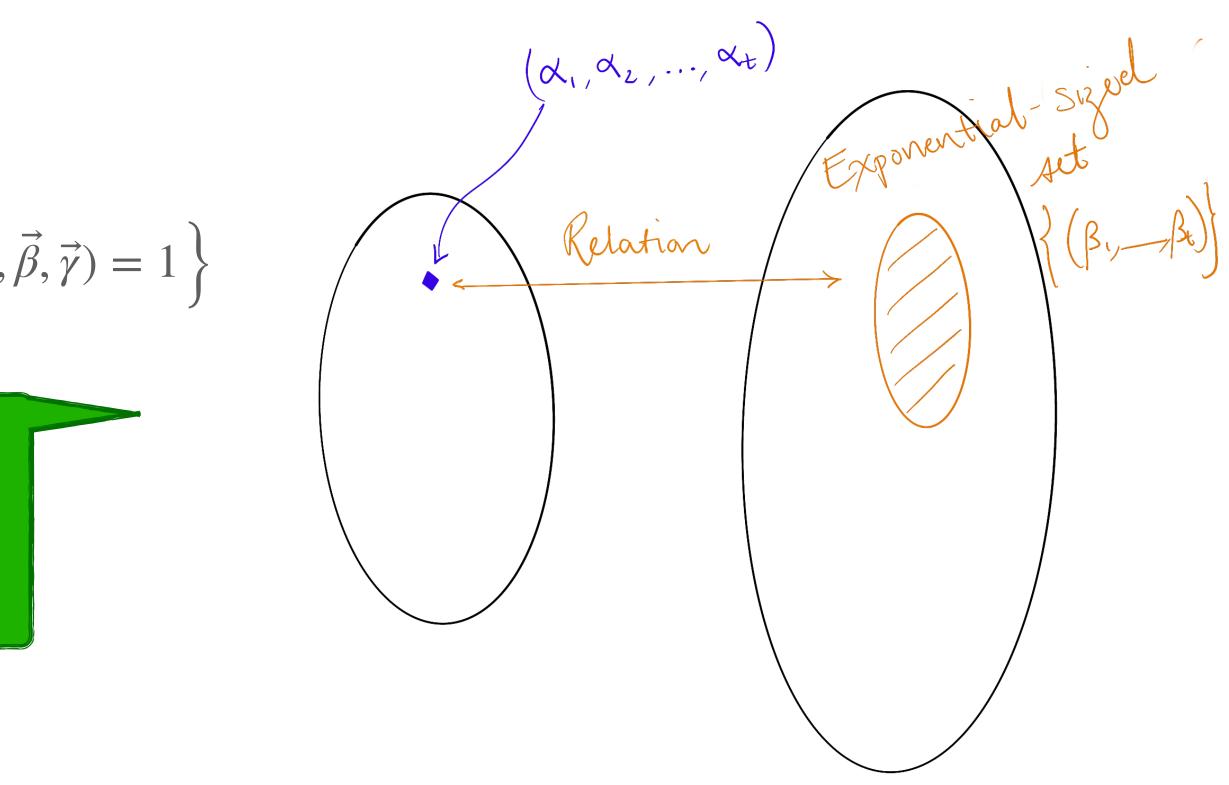
Too many bad challenges for the techniques of [CCH+19, PS19].



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

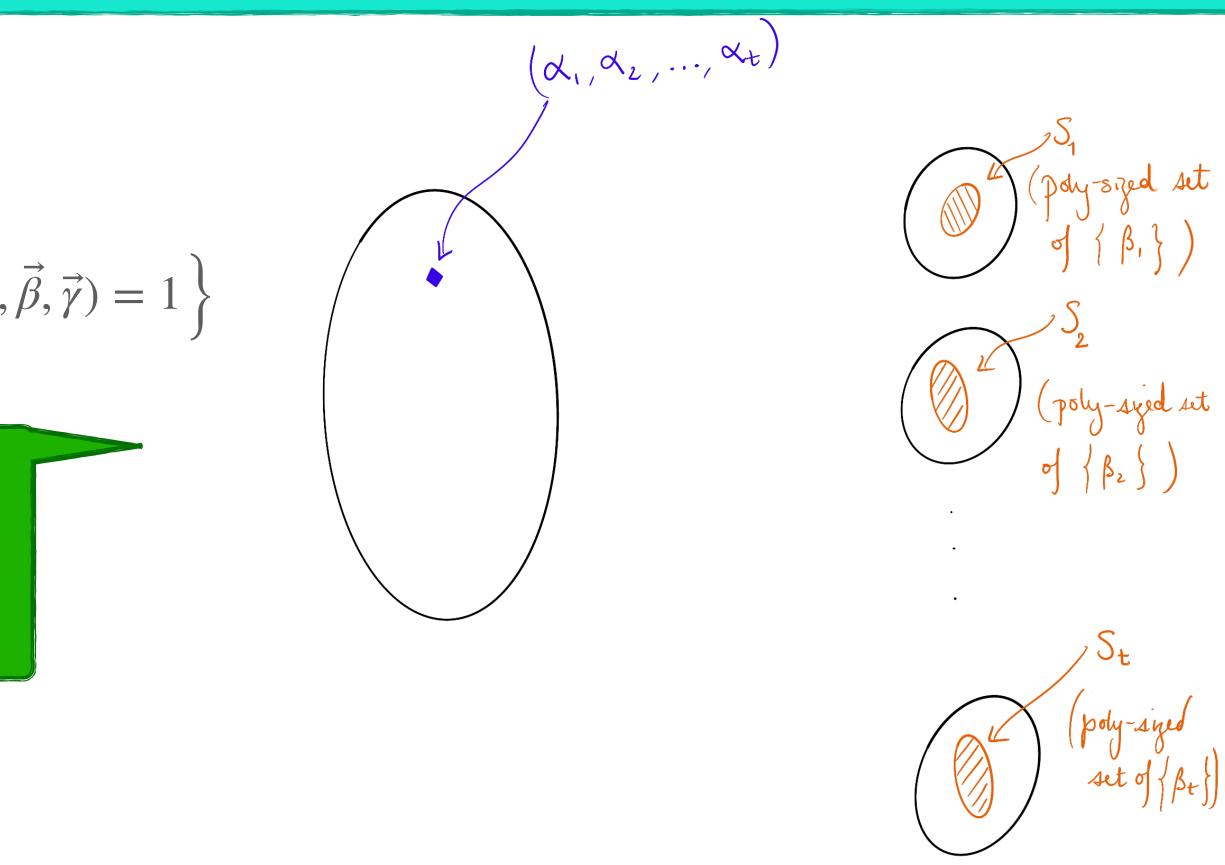
[HLR21] Use the product structure!



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

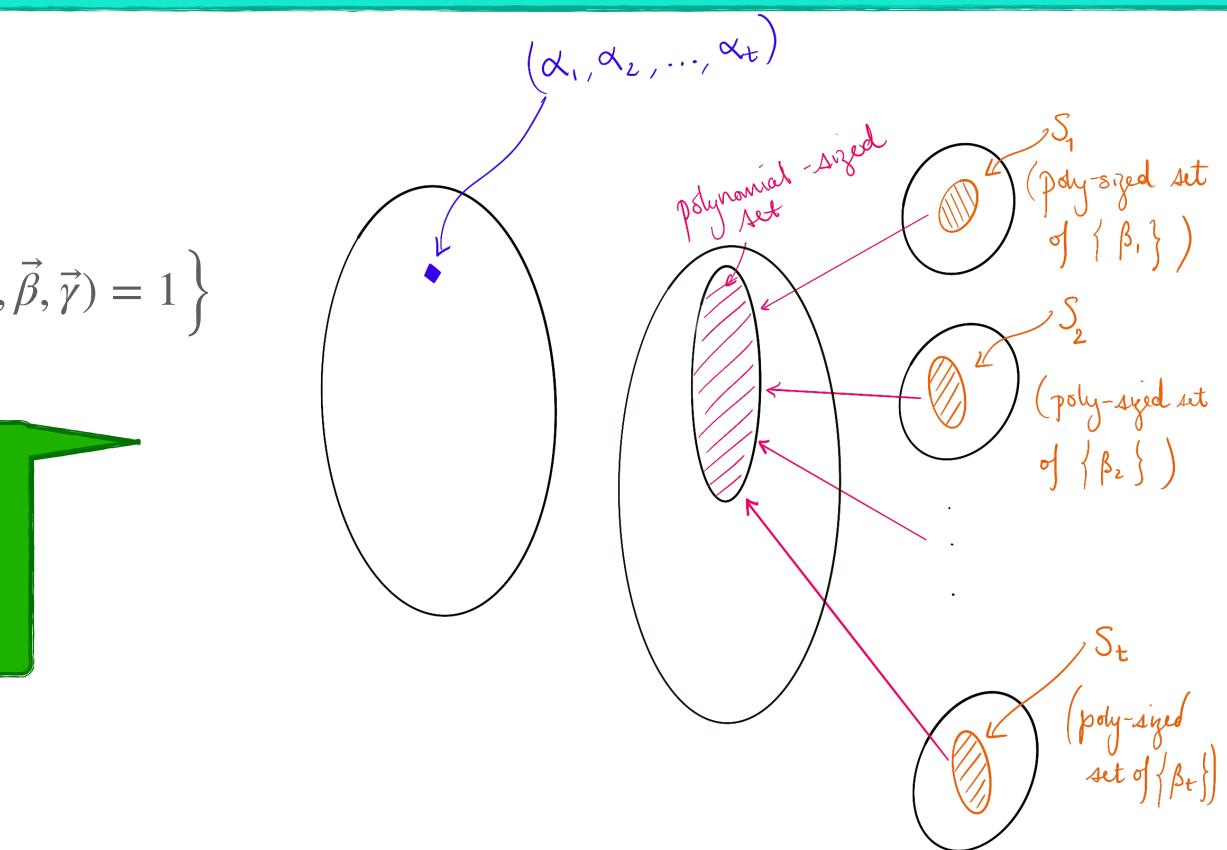
[HLR21] Use the product structure!



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

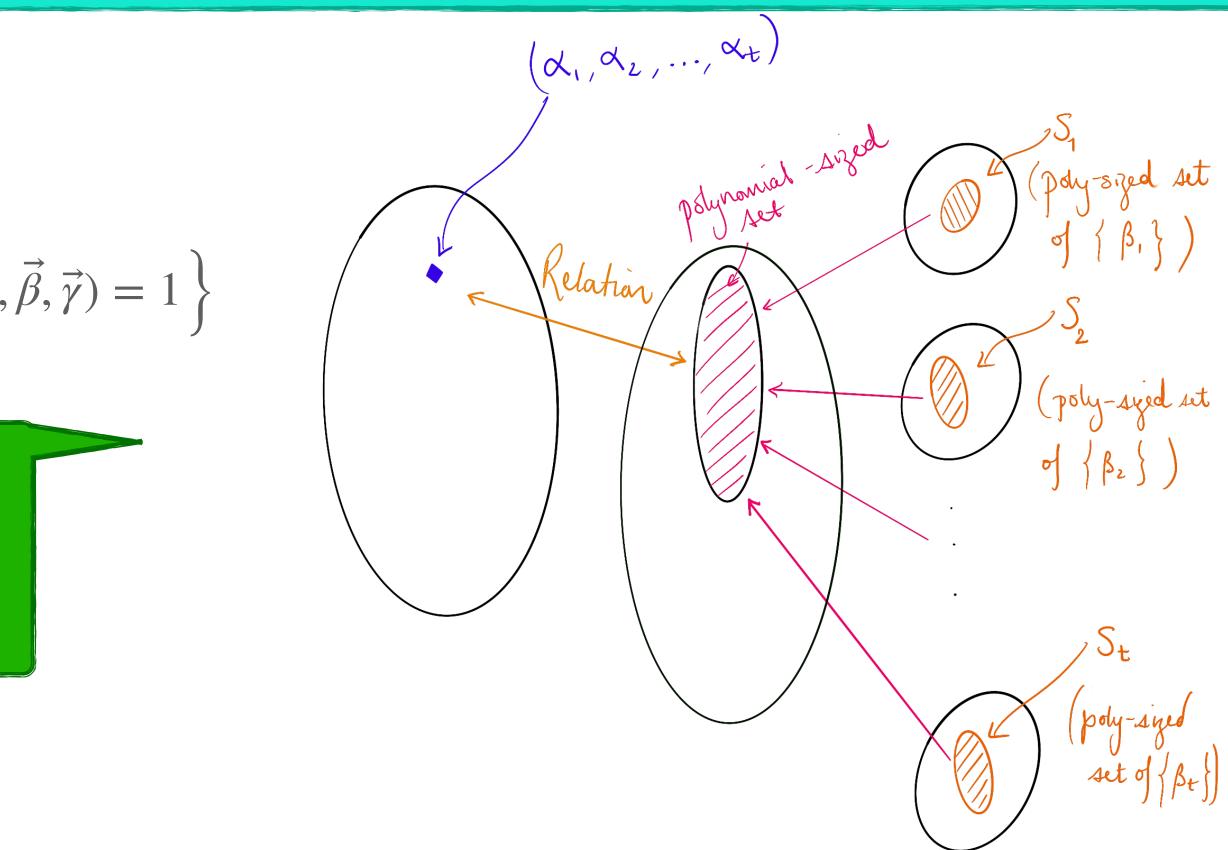
[HLR21] Use the product structure!



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

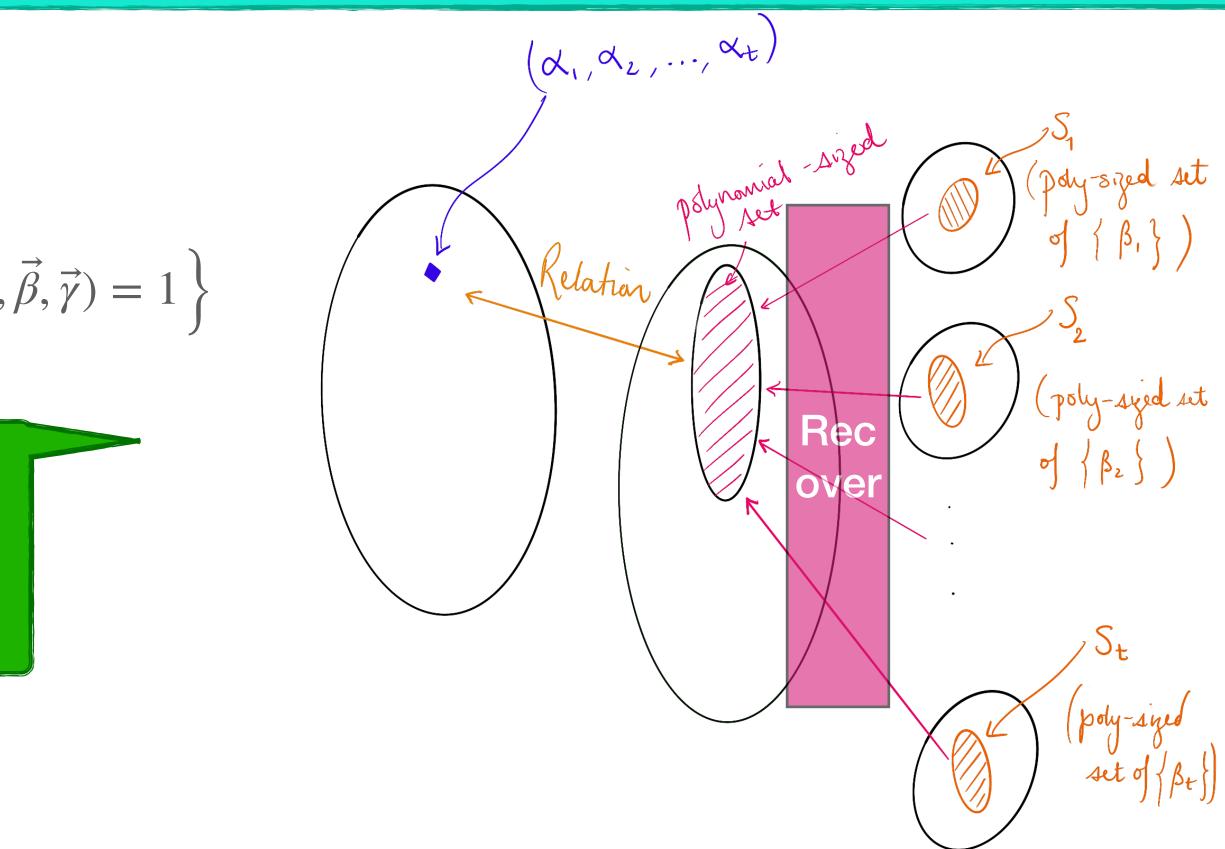
[HLR21] Use the product structure!



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

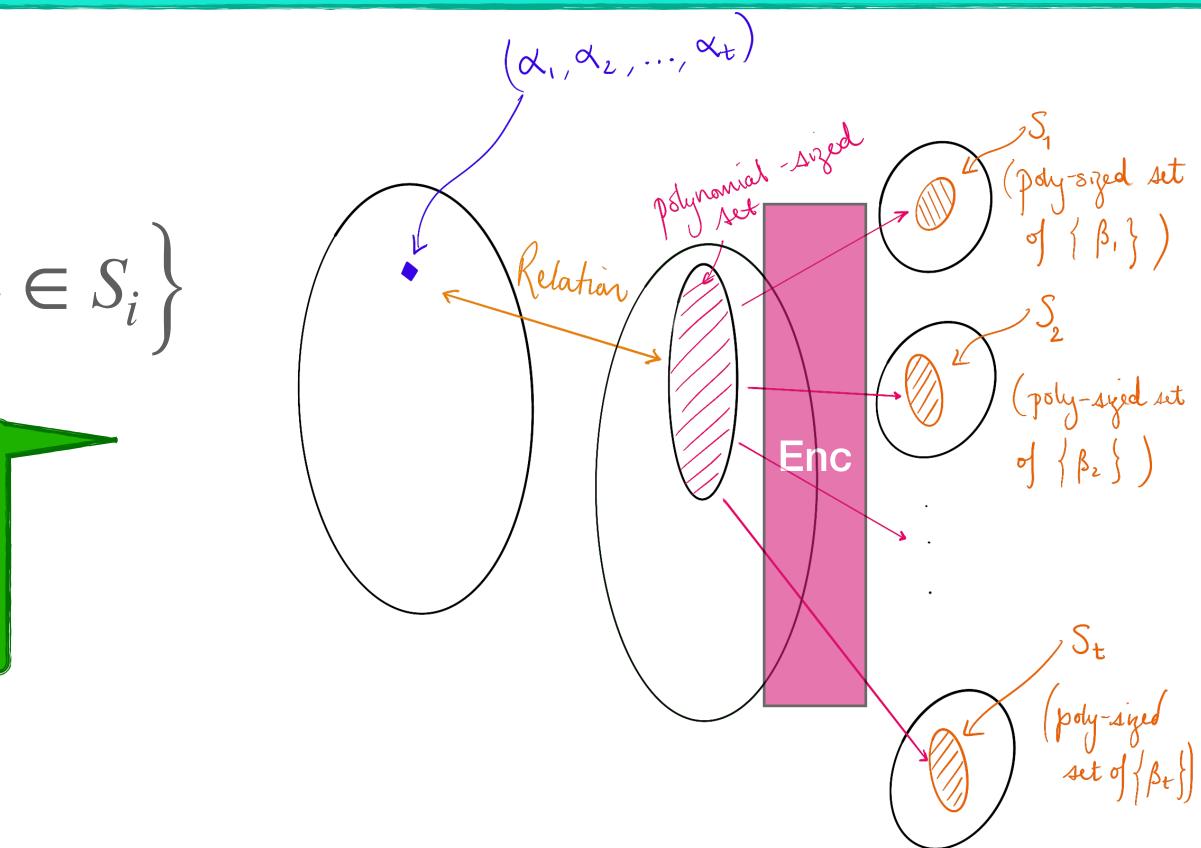
[HLR21] This is exactly list recovery! Use a list-recoverable code!



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), r \right) : \left(\mathsf{Encode}(r) \right)_i \right\}$$

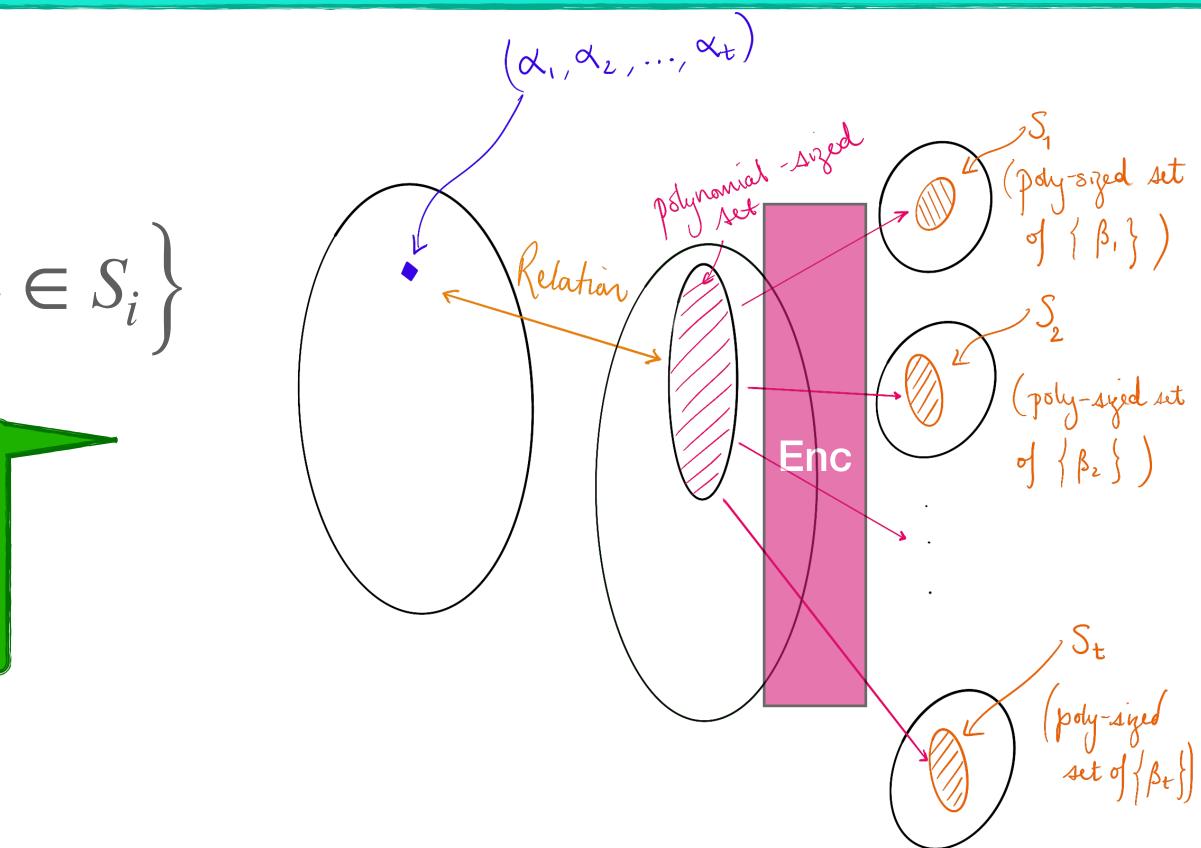
[HLR21] This is exactly list recovery! Use a list-recoverable code!



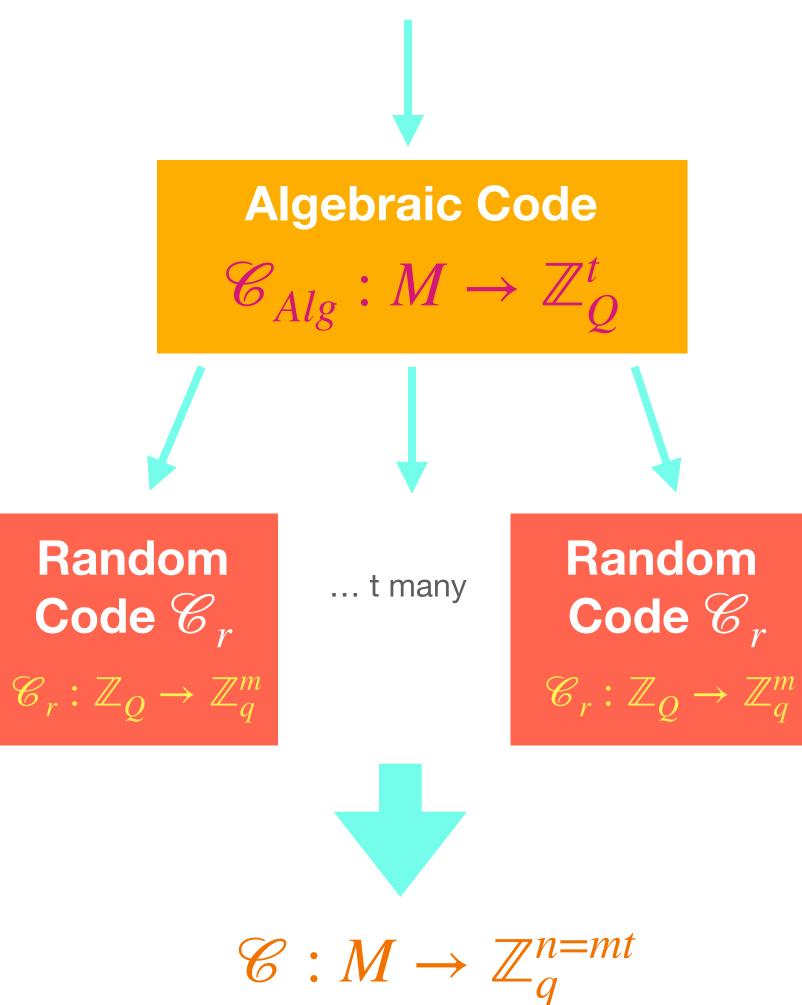
For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), r \right) : \left(\mathsf{Encode}(r) \right)_i \right\}$$

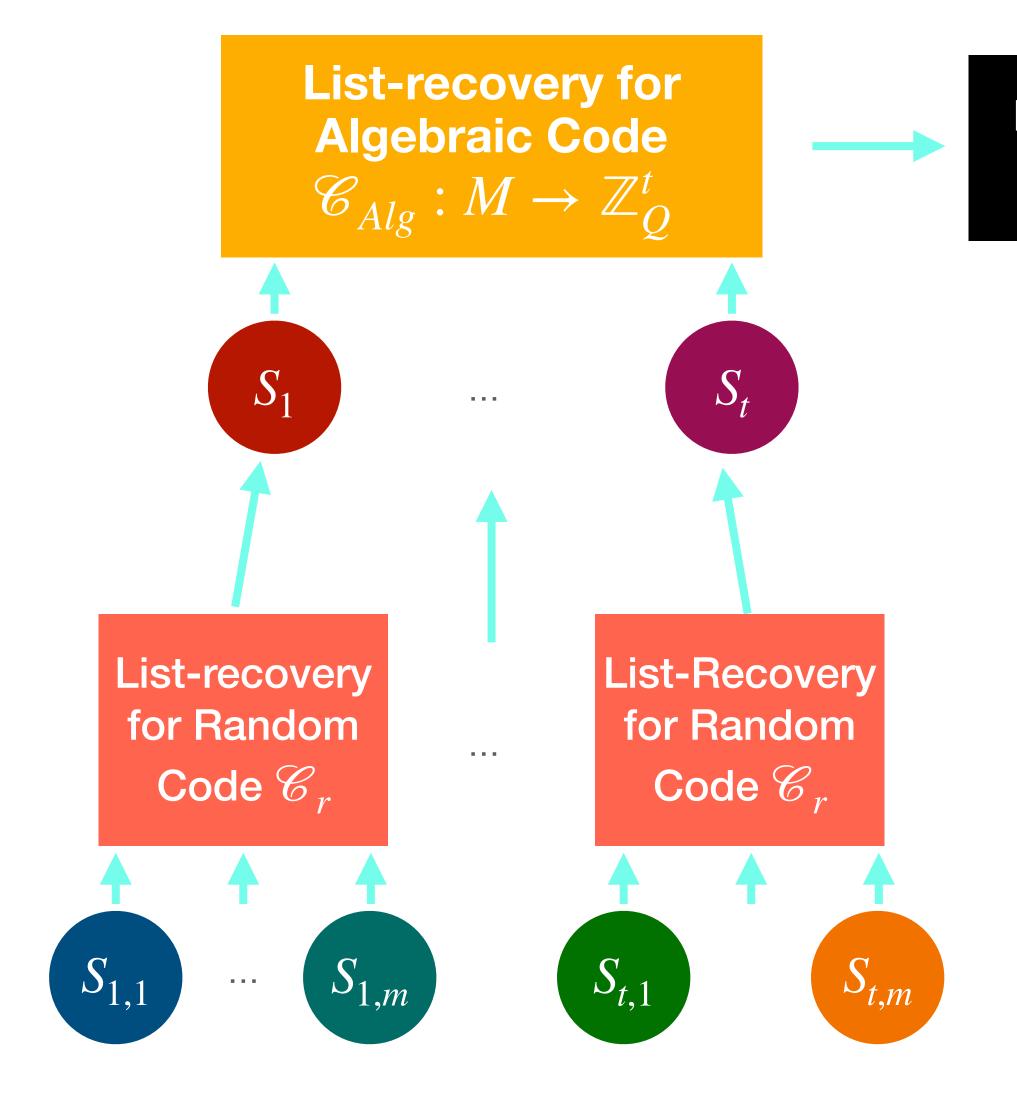
[HLR21] Use Parvaresh-Vardy code concatenated with a single random code.



Code Contenation



List-Recovery for Concatenated Codes

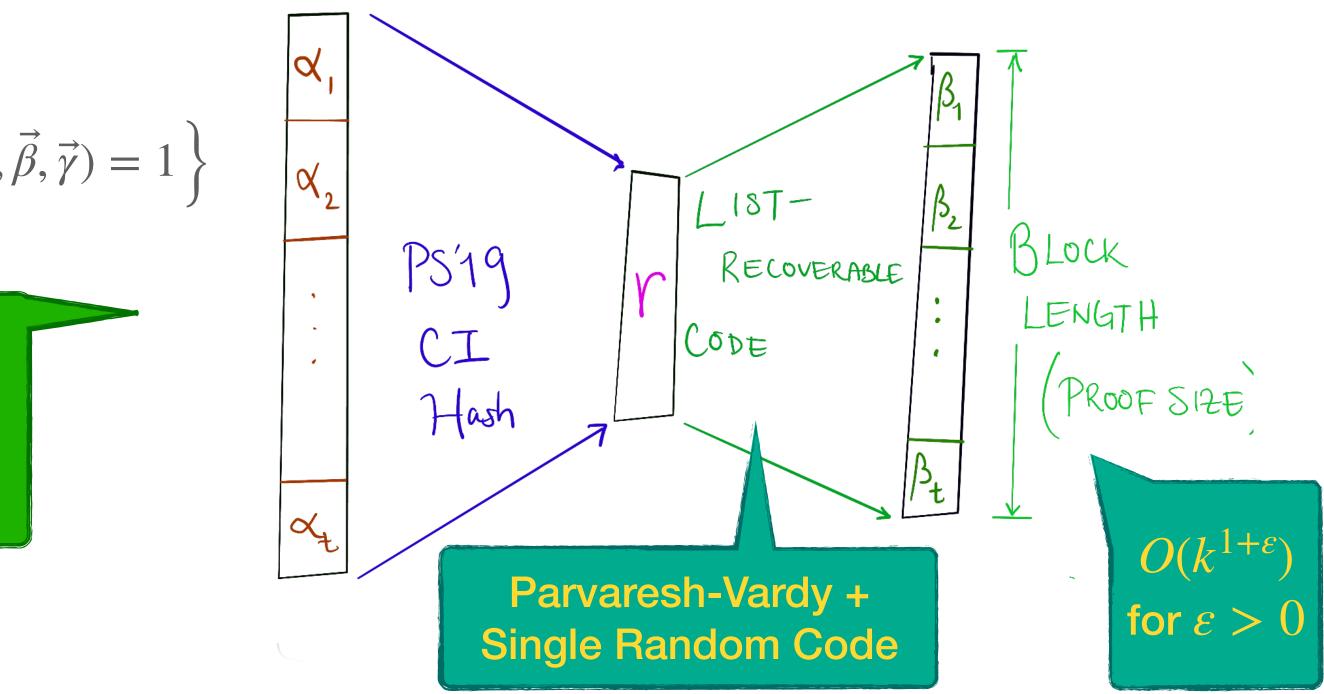


List of all messages m such that $\mathscr{C}_r(\mathscr{C}_{Alg}(m)_i)_j \in S_{i,j}$

For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

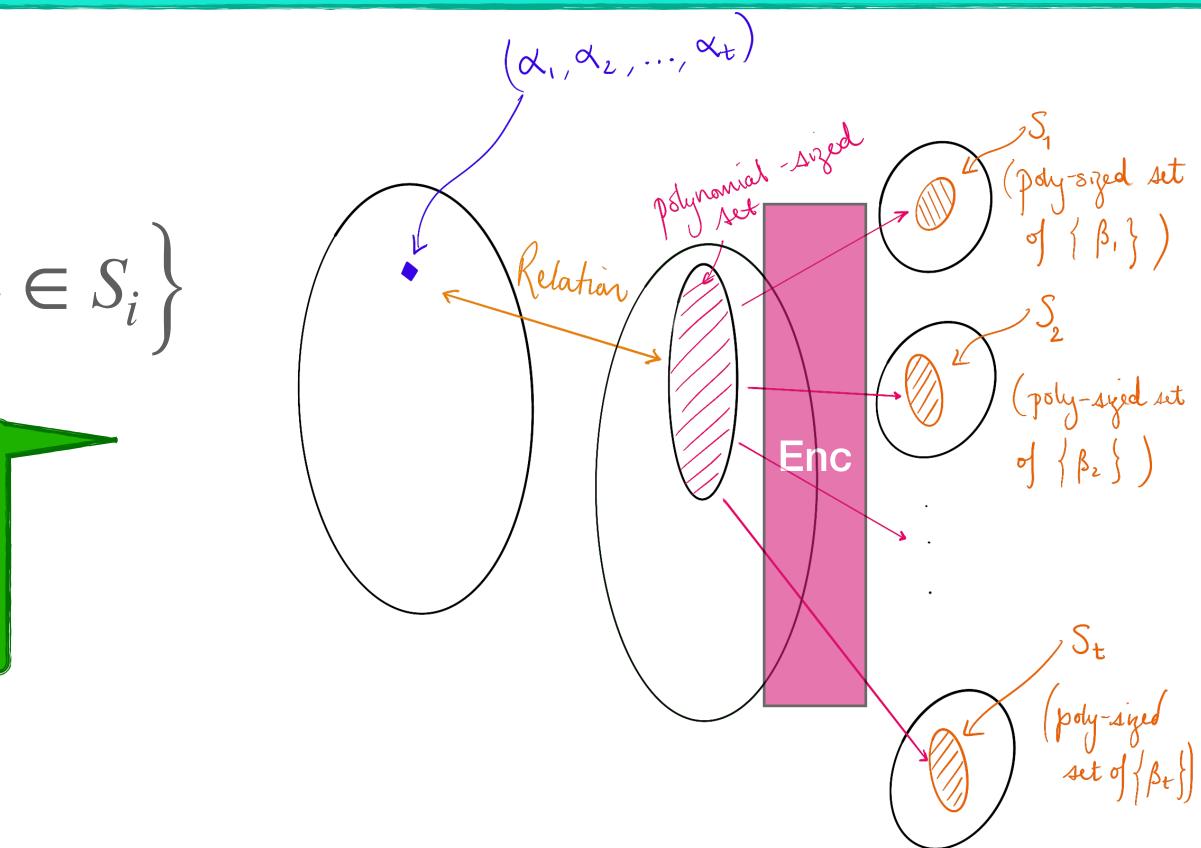
[HLR21] This is a CI hash for the desired relation.



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), r \right) : \left(\mathsf{Encode}(r) \right)_i \right\}$$

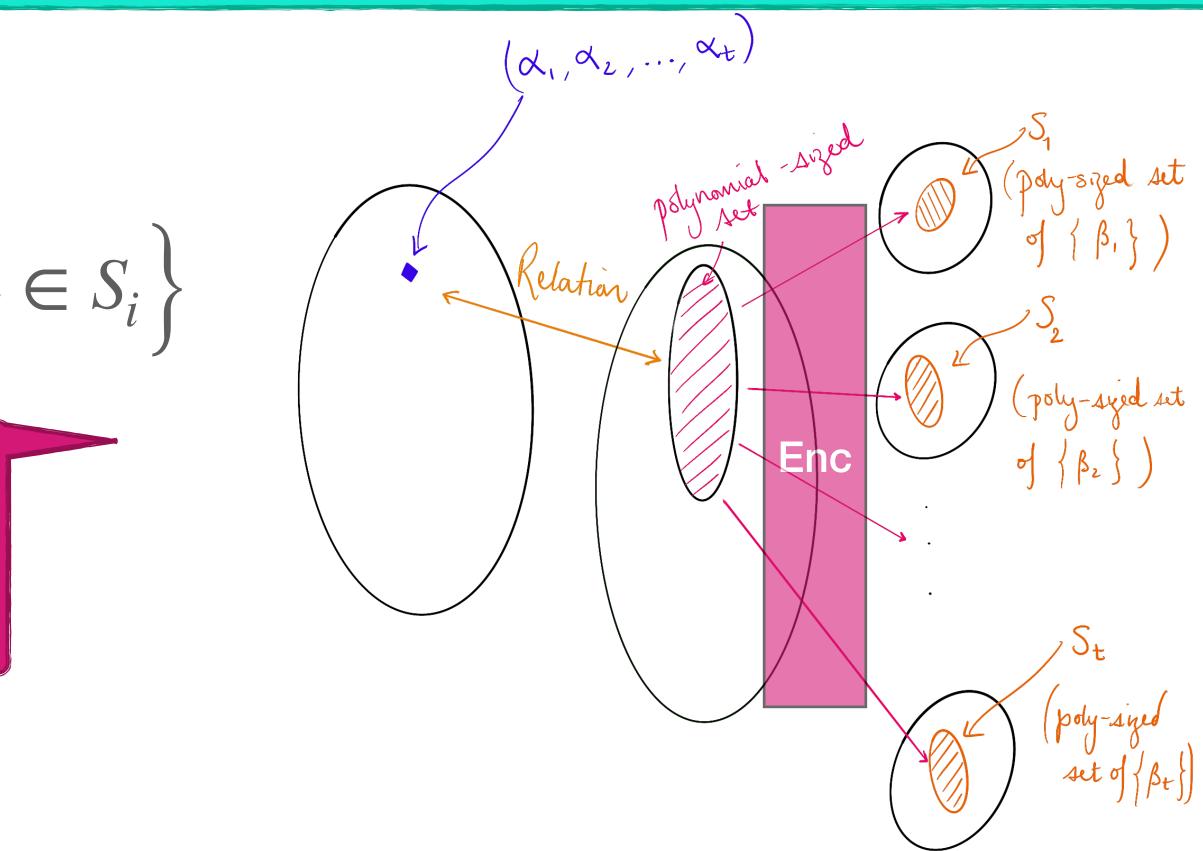
General list-recovery addresses product sets $S_1 \times S_2 \times \cdots \times S_t$ where each S_i may differ.



For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), r \right) : \left(\mathsf{Encode}(r) \right)_i \right\}$$

Is general list-recoverability necessary for the setting of MPC-in-the-Head?



Bad Challenge Structure of MPC-in-the-Head (x, ω_1) Bad Challenge Set: $S_{Com(\tau)} \times \cdots \times S_{Com(\tau)}$ $\mathbf{x}, \boldsymbol{\omega}_2$ $S_{Com(\tau)} = \left\{ i : \text{View}_i \text{ consistent} \right\} \subset \mathbb{Z}_q$ (OM(T) PARTIES, SET S For our MPC-in-the-head protocol, we have a product sets $S \times S \times \cdots \times S$ for OPENINGS TO ALL INCIDENT MSGS a single set S, a much simpler AND RANDOMNESS + INPUTS for PARTIES INS structure. USE NEXT(·) TO CHECK CONSISTENCY

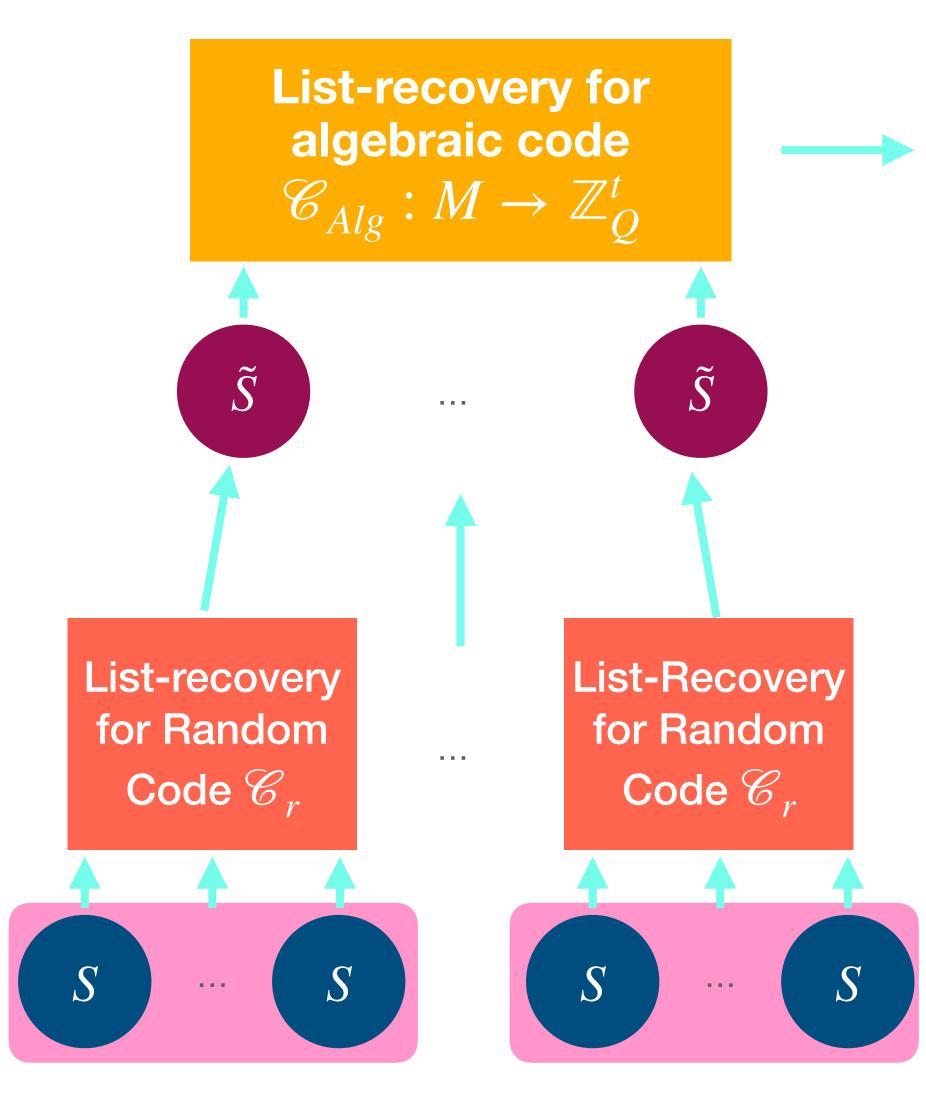
Bad Challenge Structure of MPC-in-the-Head (χ, ω_1) Bad Challenge Set: $S_{Com(\tau)} \times \cdots \times S_{Com(\tau)}$ $\mathbf{x}_{1} \mathbf{w}_{2}$ $S_{Com(\tau)} = \left\{ i : \text{View}_i \text{ consistent} \right\} \subset \mathbb{Z}_q$ COM(T) Does this simpler bad challenge RANDOM PARTIES, SET S structure allow the usage of a derandomization technique both OPENINGS TO ALL INCIDENT MSGS simpler and more efficient than AND RANDOMNESS + INPUTS for PARTIES IN S general list-recoverability? USE NEXT(·) TO CHECK CONSISTENCY

Ĩ

for Random

Code \mathscr{C}_r

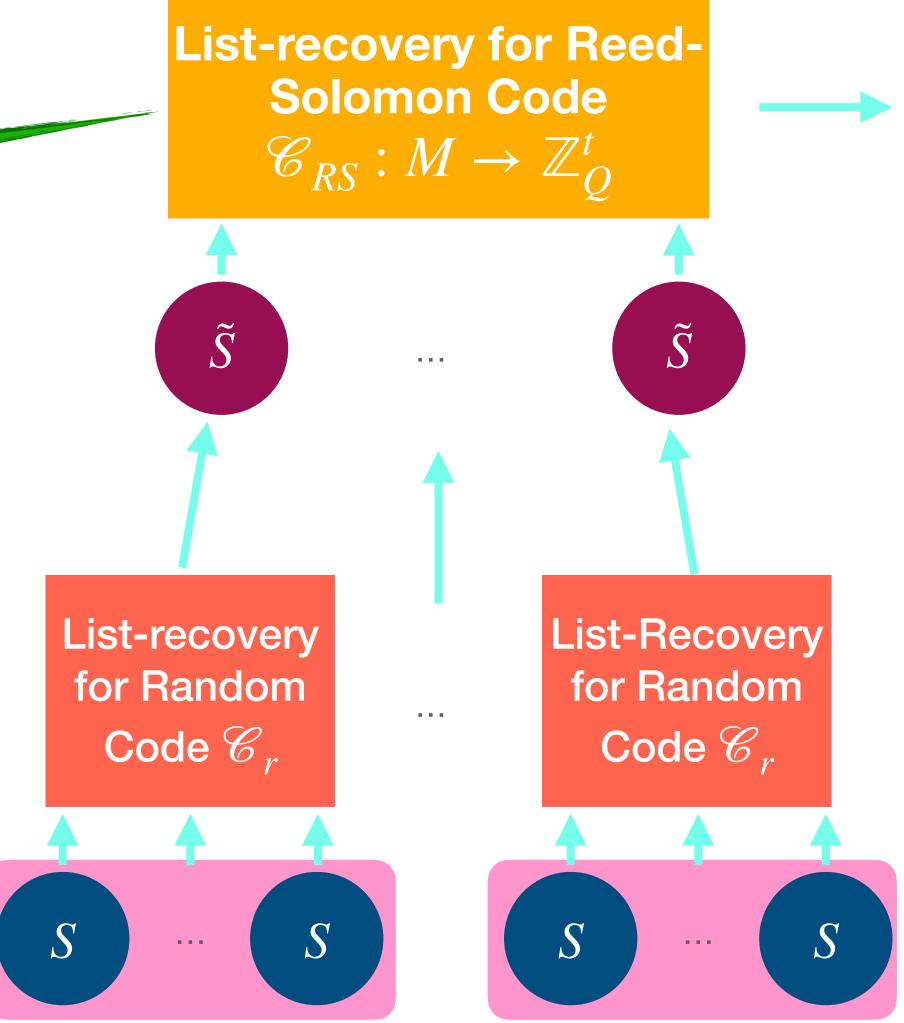
Same recurring set $S \triangleq S_{Com(\tau)}$



List of all messages *m* such that $\mathscr{C}_r(\mathscr{C}_{Alg}(m)_i)_i \in S$

Let's try to use a simple algebraic code to instantiate recurrent listrecovery!

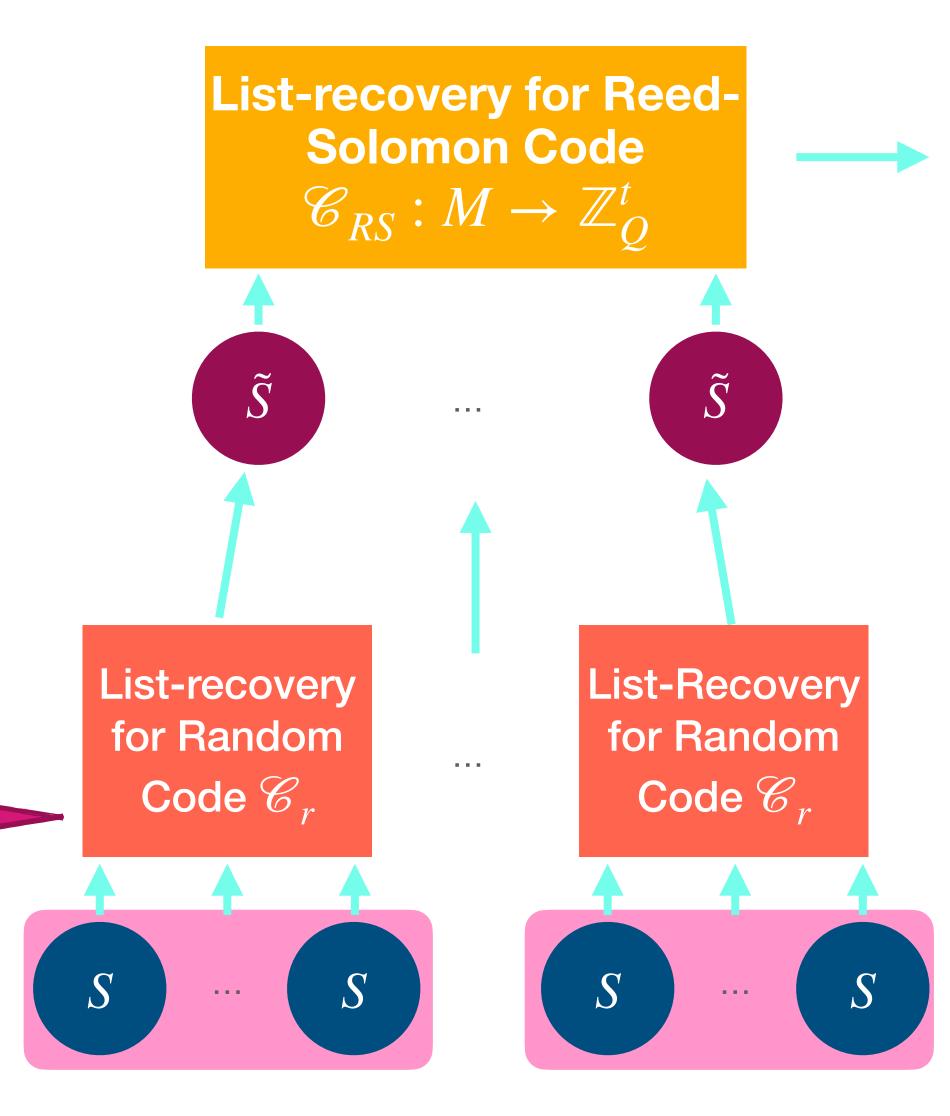
Ŝ List-recovery for Random Code \mathscr{C}_r



List of all messages *m* such that $\mathscr{C}_r(\mathscr{C}_{RS}(m)_i)_i \in \overline{S}$

List-recovery for a single random code \mathscr{C}_r may result in an output set \tilde{S} that is too large for RS list-recovery!

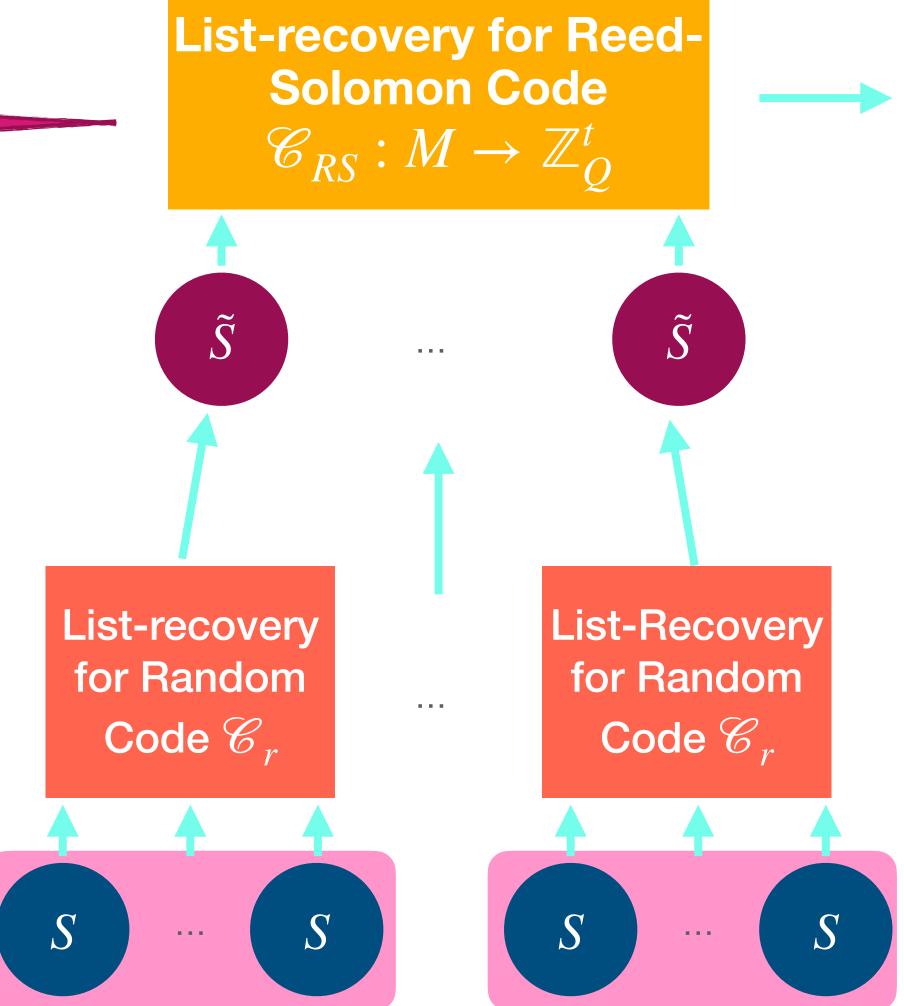
For a fixed random code, this happens with non-negligible probability over Prover's choice of S.



List of all messages m such that $\mathscr{C}_r(\mathscr{C}_{RS}(m)_i)_j \in S$

Reed-Solomon listdecoding relies crucially on the polynomial reconstruction algorithm [Sud97, **GS98**]

Ĩ List-recovery for Random Code \mathscr{C}_r

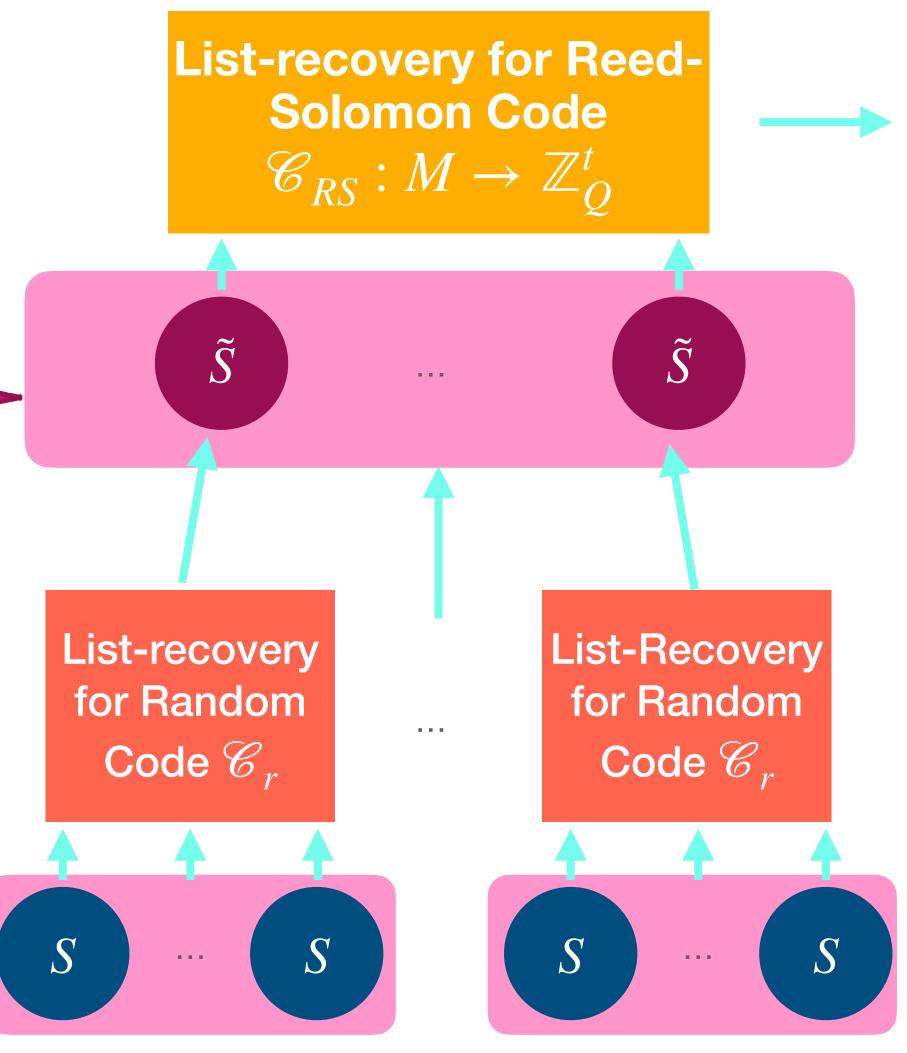


List of all messages *m* such that $\mathscr{C}_r(\mathscr{C}_{RS}(m)_i)_i \in \overline{S}$

Polynomial reconstruction only relies on the aggregate list size $\sum |\tilde{S}| \ge |S| \cdot t$ i=1

> List-recovery for Random Code \mathscr{C}_r

Ŝ



List of all messages *m* such that $\mathscr{C}_r(\mathscr{C}_{RS}(m)_i)_i \in S$

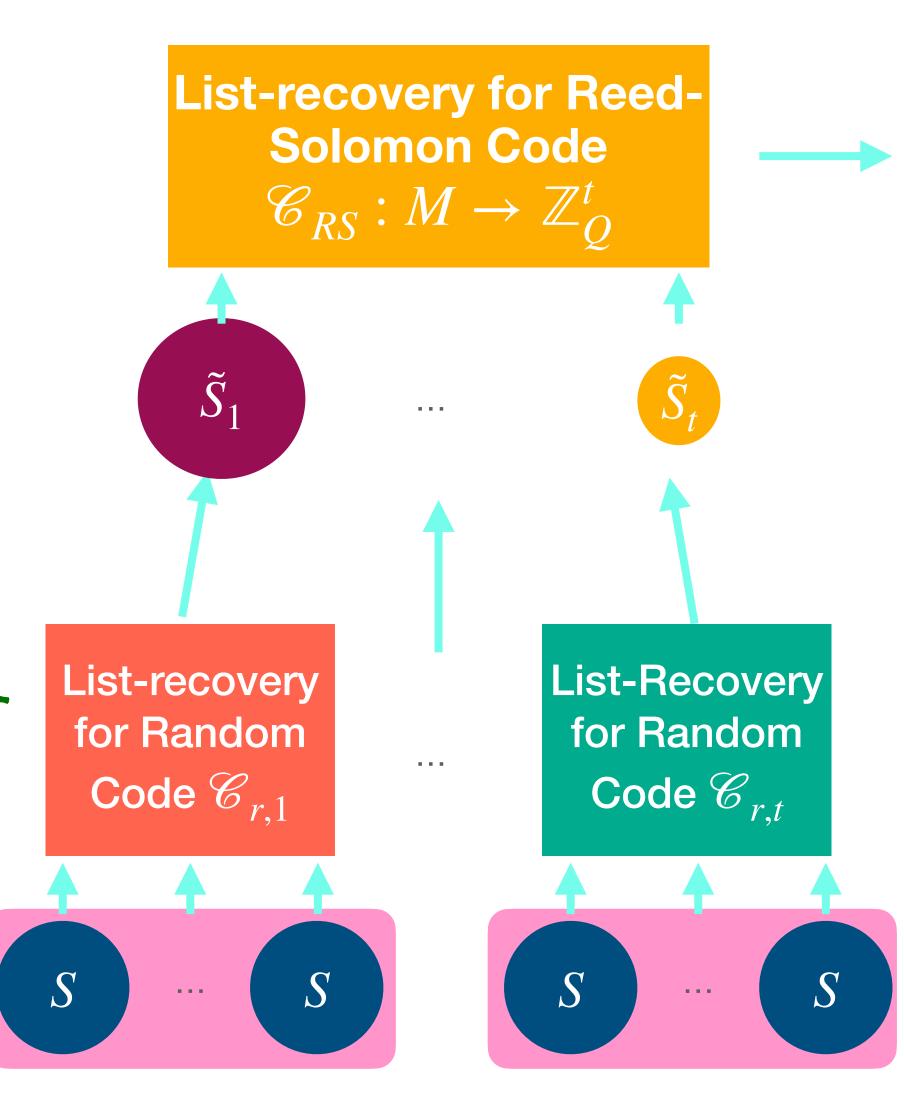
Aggregate Size Analysis

 \tilde{S}_1

for Random

Code $\mathscr{C}_{r,1}$

If we use *multiple* random codes, then while some output sets may be large, others may be small.



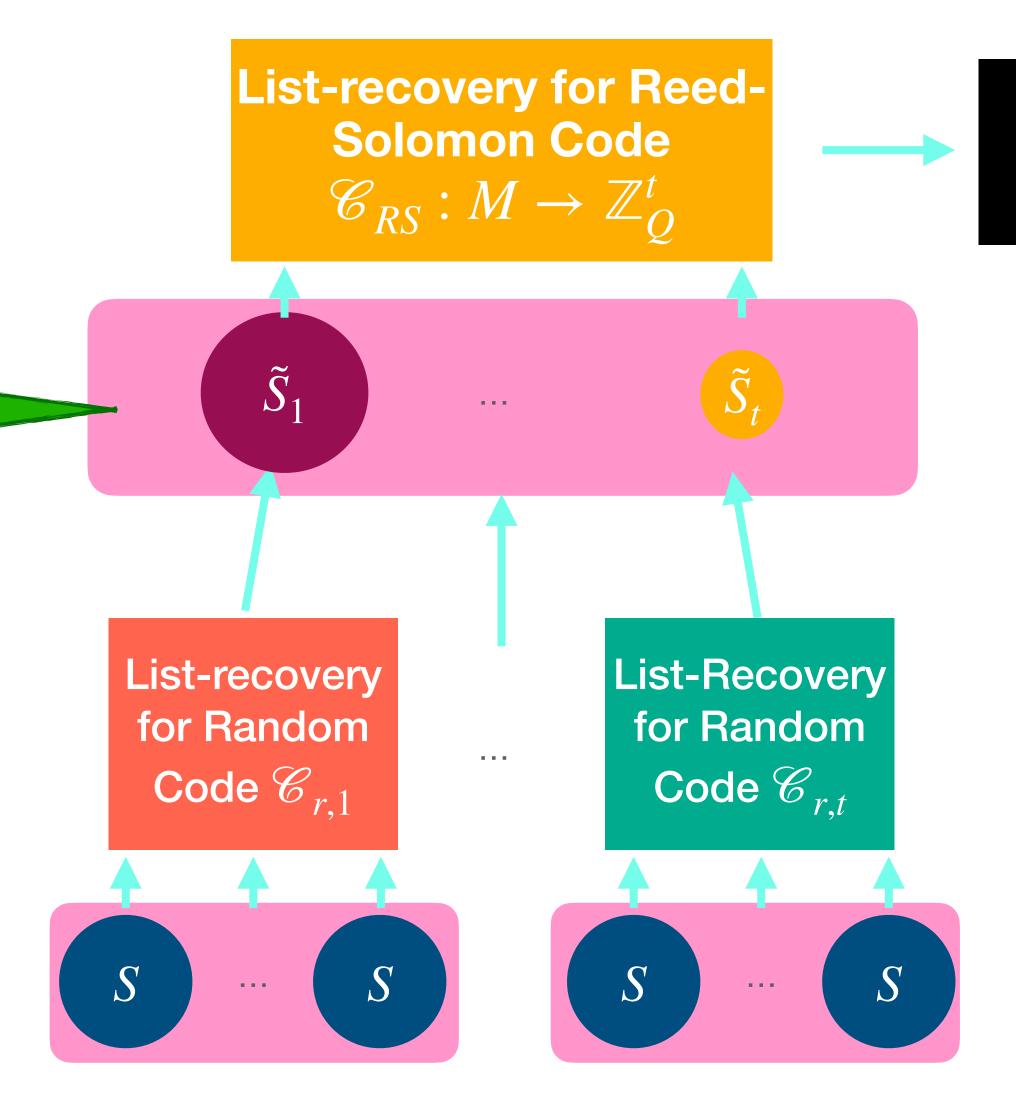
List of all messages *m* such that $\mathscr{C}_r(\mathscr{C}_{RS}(m)_i)_i \in S$

Aggregate Size Analysis

For $|S| = \alpha \cdot q$ for $\alpha \in (0,1), q = \tilde{O}(k)$ we achieve

 $\sum |\tilde{S}_i| \le \tilde{O}\left(|S|\right)$

with all but negligible probability.



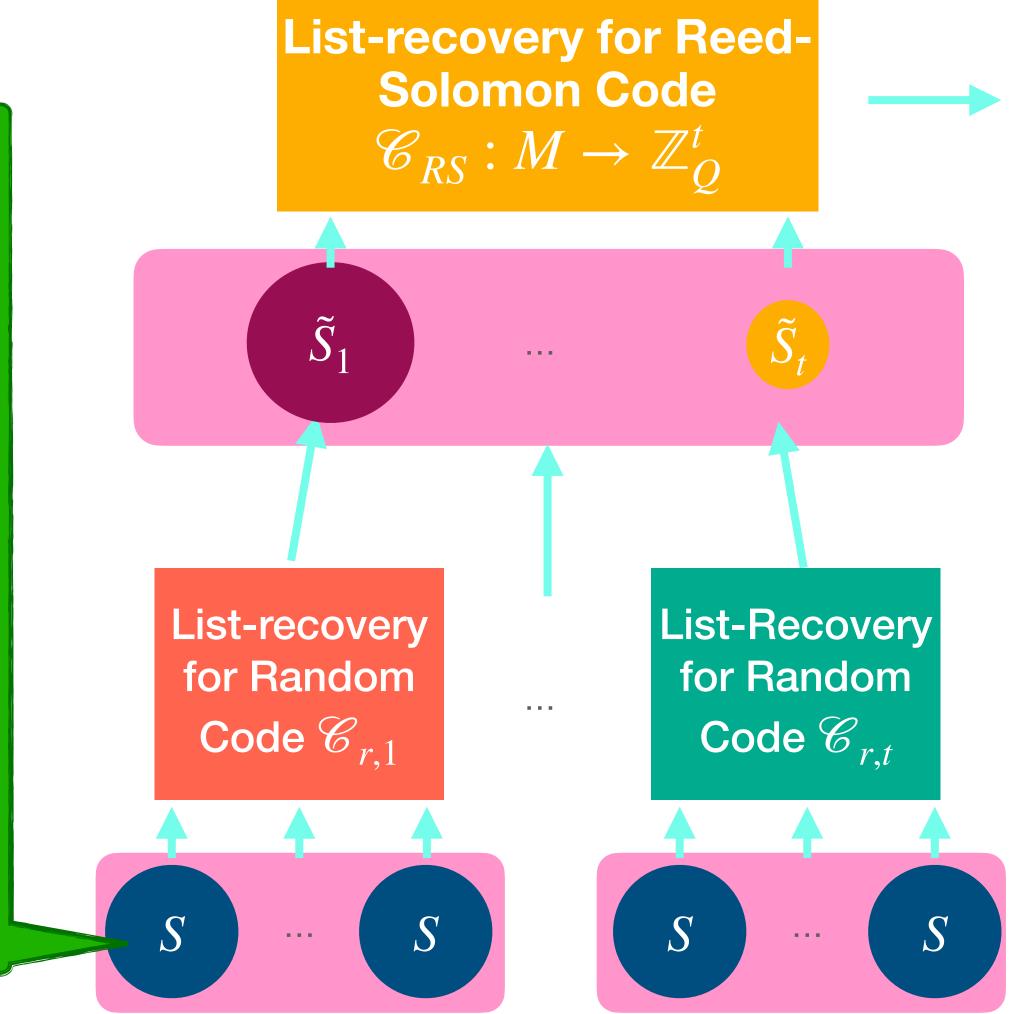
List of all messages m such that $\mathscr{C}_r(\mathscr{C}_{RS}(m)_i)_j \in S$

Aggregate Size Analysis

Polynomial reconstruction succeeds for every choice of the set S (of the appropriate size) with all but negligible probability.

 \tilde{S}_1 List-recovery for Random

Code $\mathscr{C}_{r,1}$



List of all messages *m* such that $\mathscr{C}_r(\mathscr{C}_{RS}(m)_i)_i \in S$

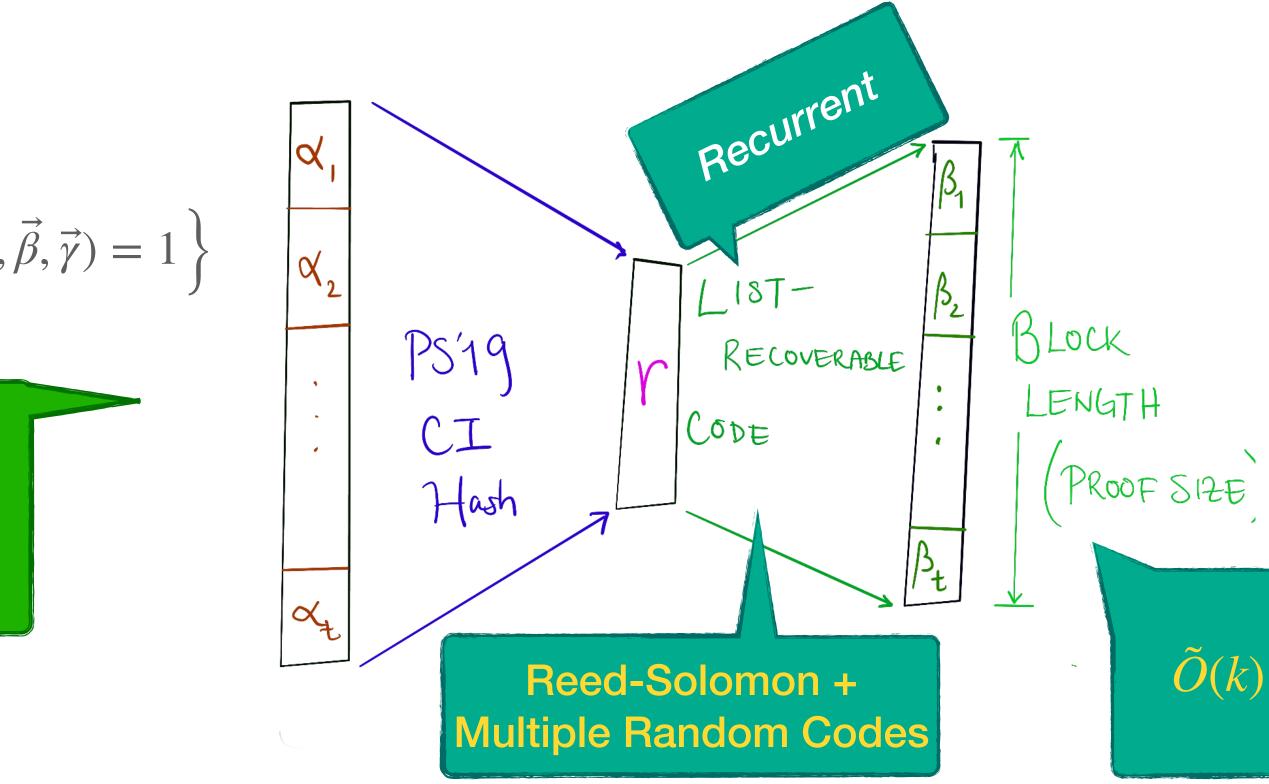
Summary:

We modify the MPC-in-the-head protocol [IKOS07] so that it has a bad challenge set amenable to recurrent list-recovery. We instantiate the code with a Reed-Solomon code concatenated with multiple random codes, and use aggregate size analysis to obtain a quasi-linear block length!

For a statement $x \notin L$:

$$R_x = \left\{ \left((\alpha_1, \dots, \alpha_t), (\beta_1, \dots, \beta_t) \right) : \exists (\gamma_1, \dots, \gamma_t) \text{ s.t. } V(x, \overrightarrow{\alpha}, \beta_t) \right\}$$

This is still a CI hash for the desired relation.



Thank you!

Appendix

Reed-Solomon Codes + Polynomial Reconstruction

Def [RS60]: A Reed-Solomon code \mathscr{C}_{λ} : $\mathbb{Z}_Q^{k+1} \to \mathbb{Z}_Q^t$ is parameterized by a base field size $Q = Q(\lambda)$, a degree $k = k(\lambda)$, a block length $t = t(\lambda)$, and a set of values $A_{\lambda} = \{\alpha_1, ..., \alpha_t\}$. \mathscr{C}_{λ} takes as input a polynomial p of degree k over \mathbb{Z}_Q , represented by its k + 1 coefficients, and outputs the vector of evaluations $(p(\alpha_1), ..., p(\alpha_t))$ of p on each of the points α_i .

Reed-Solomon Codes + Polynomial Reconstruction

Def [RS60]: A Reed-Solomon code \mathscr{C}_{λ} : $\mathbb{Z}_{O}^{k+1} \to \mathbb{Z}_{O}^{t}$ is parameterized by a base field size $Q = Q(\lambda)$, a degree $k = k(\lambda)$, a block length $t = t(\lambda)$, and a set of values $A_{\lambda} = \{\alpha_1, \dots, \alpha_t\}$. \mathscr{C}_{λ} takes as input a polynomial p of degree k over \mathbb{Z}_{O} , represented by its k+1 coefficients, and outputs the vector of evaluations $(p(\alpha_1), \ldots, p(\alpha_t))$ of p on each of the points α_i .

Polynomial Reconstruction:

- INPUT: Integers k_p , n_p . Distinct pairs $\{(\alpha_i, y_i)\}_{i \in [n_p]}$, where $\alpha_i, y_i \in \mathbb{Z}_Q$.
- OUTPUT: A list of all polynomials $p(X) \in \mathbb{Z}_O[X]$ of degree at most k_p , which satisfy $p(\alpha_i) = y_i, \forall i \in [n_p].$