
UCLA

Efficient NIZKs from LWE via

Polynomial Reconstruction and “MPC in the Head”

Riddhi Ghosal Paul Lou Amit Sahai
UCLAUCLA

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

NIZKs for all of NP from LWE [CCH+19, PS19]

L ∈ 𝖭𝖯

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

NIZKs for all of NP from LWE [CCH+19, PS19]

L ∈ 𝖭𝖯

x ∈ L

NIZKs for all of NP from LWE [CCH+19, PS19]

L ∈ 𝖭𝖯

x ∈ L

Karp reduction

x′ ∈ 𝖧𝖠𝖬

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

NIZKs for all of NP from LWE [CCH+19, PS19]

L ∈ 𝖭𝖯

x ∈ L

Karp reduction

x′ ∈ 𝖧𝖠𝖬 Hamiltonicity [FLS90]

NIZK Argument in
the CRS model

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

NIZKs for all of NP from LWE [CCH+19, PS19, HLR21]

L ∈ 𝖭𝖯

x ∈ L

Karp reduction

x′ ∈ 𝟥𝖢𝖮𝖫 e.g. 3COL [GMW86]

NIZK Argument for
any commit-and-

open protocol
[HLR21]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

NIZKs for all of NP from LWE [CCH+19, PS19, HLR21]

L ∈ 𝖭𝖯

x ∈ L

Karp reduction

x′ ∈ 𝟥𝖢𝖮𝖫 e.g. 3COL [GMW86]

NIZK Argument for
any commit-and-

open protocol
[HLR21]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

Large proof
size due to

parallel
repetition!

NIZKs for all of NP from LWE [CCH+19, PS19, HLR21]

L ∈ 𝖭𝖯

x ∈ L

Karp reduction

x′ ∈ 𝟥𝖢𝖮𝖫 e.g. 3COL [GMW86]

NIZK Argument for
any commit-and-

open protocol
[HLR21]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

Large proof
size due to

parallel
repetition!Expensive!

Our Work

MPC-in-the-Head
[IKOS07]

NIZK Argument in
the CRS model

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without
parallel repetition and Karp reductions.

Our Work

MPC-in-the-Head
[IKOS07]

NIZK Argument in
the CRS model

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without
parallel repetition and Karp reductions.

Allows us to translate work
on efficient perfectly

robust MPC protocols
[DIK10, BGJK21, GPS21]

 to efficient NIZKs from
LWE!

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without
parallel repetition and Karp reductions.

Our Work

Main Theorem (informal)

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of
NP whose proof size is field elements in , where is the

security parameter, , , and is an arithmetic circuit for the NP
verification function.

O(|C | + q ⋅ 𝖽𝖾𝗉𝗍𝗁(C)) + 𝗉𝗈𝗅𝗒(k) 𝔽 k
q = Õ(k) |𝔽 | ≥ 2q C

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without
parallel repetition and Karp reductions.

Our Work

Main Theorem (informal)

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of
NP whose proof size is field elements in , where is the

security parameter, , , and is an arithmetic circuit for the NP
verification function.

O(|C | + q ⋅ 𝖽𝖾𝗉𝗍𝗁(C)) + 𝗉𝗈𝗅𝗒(k) 𝔽 k
q = Õ(k) |𝔽 | ≥ 2q C

Main Theorem (informal)

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of
NP whose proof size is field elements in , where is the

security parameter, , , and is an arithmetic circuit for the NP
verification function.

O(|C | + q ⋅ 𝖽𝖾𝗉𝗍𝗁(C)) + 𝗉𝗈𝗅𝗒(k) 𝔽 k
q = Õ(k) |𝔽 | ≥ 2q C

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without
parallel repetition and Karp reductions.

Our Work

[GGI+15] Can use FHE to bootstrap
an underlying NIZK to one with proof

size bits. |w | + 𝗉𝗈𝗅𝗒(k)

Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of
 for any small constant .

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the
special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0

Õ(k)

Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of
 for any small constant .

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the
special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0

Õ(k)

Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of
 for any small constant .

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the
special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0

Õ(k)

Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of
 for any small constant .

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the
special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0

Õ(k)

Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of
 for any small constant .

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the
special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0

Õ(k)

Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of
 for any small constant .

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the
special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0

Õ(k)

We show that this yields less efficient proofs.

Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of
 for any small constant .

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the
special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0

Õ(k)

Overview: Our Technique
• [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

• Parvaresh-Vardy code concatenated with a single random code achieves block-size of
 for any small constant .

• Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But general list-recovery does not take advantage of the
special structure present in the MPC-in-the-head setting.

• Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use
polynomial reconstruction [Sud97, GS98] to achieve an improved block size of .

O(k1+ϵ) ϵ > 0

Õ(k)

MPC-in-the-Head [IKOS07]

MPC-in-the-Head [IKOS07]

MPC-in-the-Head [IKOS07]

MPC-in-the-Head [IKOS07]

Black-box use of the MPC protocol!

MPC-in-the-Head [IKOS07]

MPC-in-the-Head [IKOS07]

MPC-in-the-Head [IKOS07]

Our Modification of MPC-in-the-Head

Non-black-box
use of the MPC

protocol!

Our Modification of MPC-in-the-Head

Our Modification of MPC-in-the-Head

Our Modification of MPC-in-the-Head

Directly compute NP Verification
circuit. Avoids Karp reductions.

Our Modification of MPC-in-the-Head

Commit once to the transcript . Not a
parallel repetition!

τ

Directly compute NP Verification
circuit. Avoids Karp reductions.

Our Modification of MPC-in-the-Head

Commit once to the transcript . Not a
parallel repetition!

τ

Each party’s view is now
independently verifiable!

Directly compute NP Verification
circuit. Avoids Karp reductions.

A Coding-Theoretic Instantiation
of Fiat-Shamir following [HLR21]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

Consider an interactive proof for some NP language that satisfies:

• Completeness
• -soundness against unbounded provers (statistical soundness)
• Honest-verifier zero-knowledge (HVZK)
• Public coin

L

negl

Amplifying Soundness via Parallel Repetition

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

Fiat-Shamir
Paradigm [FS87]

Fiat-Shamir Paradigm [FS87]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

Soundness is preserved if is sampled from a correlation
intractable hash family for an appropriate relation .

H
R

Correlation Intractability [CGH04]

[CGH04] Def’n: A hash family is correlation
intractable (CI) for a sparse relation if for all PPT

ℋ
R 𝒜

Pr h ← ℋ
x ← 𝒜(h)

[(x, h(x)) ∈ R] = 𝗇𝖾𝗀𝗅

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

What relation do we consider?

Correlation Intractability [CGH04]

[CGH04] Def’n: A hash family is correlation
intractable (CI) for a sparse relation if for all PPT

ℋ
R 𝒜

Pr h ← ℋ
x ← 𝒜(h)

[(x, h(x)) ∈ R] = 𝗇𝖾𝗀𝗅

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

What relation do we consider?

Correlation Intractability [CGH04]

Naively for a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

knowledge interactive proof:

What relation do we consider?

Correlation Intractability [CGH04]

Naively for a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}
[CCH+19] “Bad Challenges” (there’s some response that fools into accepting)V

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

[PS19] addresses the case of
functions.

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

By a guessing reduction, [CCH+19,
PS19] also addresses the case of

polynomially many bad challenges.

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

Too many bad challenges for the
techniques of [CCH+19, PS19].

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

[HLR21] Use the product structure!

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

[HLR21] Use the product structure!

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

[HLR21] Use the product structure!

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

[HLR21] Use the product structure!

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

[HLR21] This is exactly list recovery!
Use a list-recoverable code!

Rec
over

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), r) : (𝖤𝗇𝖼𝗈𝖽𝖾(r))i ∈ Si}
[HLR21] This is exactly list recovery!

Use a list-recoverable code!

Enc

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), r) : (𝖤𝗇𝖼𝗈𝖽𝖾(r))i ∈ Si}
Enc[HLR21] Use Parvaresh-Vardy code

concatenated with a single random
code.

Code Contenation

Algebraic Code
𝒞Alg : M → ℤt

Q

…… ……

Random
Code 𝒞r

Random
Code 𝒞r……

𝒞 : M → ℤn=mt
q

… t many

𝒞r : ℤQ → ℤm
q 𝒞r : ℤQ → ℤm

q

List-Recovery for Concatenated Codes
List-recovery for
Algebraic Code
𝒞Alg : M → ℤt

Q

List-recovery
for Random

Code 𝒞r

List-Recovery
for Random

Code 𝒞r
…

S1,1 S1,m…

S1 St

St,1 St,m

…

List of all messages such
that

m
𝒞r(𝒞Alg(m)i)j ∈ Si,j

Fiat-Shamir from Coding Theory [HLR21]

[HLR21] This is a CI hash for the
desired relation.

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

for
O(k1+ε)

ε > 0Parvaresh-Vardy +
Single Random Code

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), r) : (𝖤𝗇𝖼𝗈𝖽𝖾(r))i ∈ Si}
EncGeneral list-recovery addresses

product sets where
each may differ.

S1 × S2 × ⋯ × St
Si

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

Fiat-Shamir from Coding Theory [HLR21]

For a statement :
x ∉ L

Rx = {((α1, …, αt), r) : (𝖤𝗇𝖼𝗈𝖽𝖾(r))i ∈ Si}
Enc

Is general list-recoverability necessary
for the setting of MPC-in-the-Head?

Bad Challenge Structure of MPC-in-the-Head

Bad Challenge Set:

SCom(τ) × ⋯ × SCom(τ)

SCom(τ) = {i : 𝖵𝗂𝖾𝗐i consistent } ⊂ ℤq

For our MPC-in-the-head protocol, we
have a product sets for

a single set , a much simpler
structure.

S × S × ⋯ × S
S

Bad Challenge Structure of MPC-in-the-Head

Does this simpler bad challenge
structure allow the usage of a

derandomization technique both
simpler and more efficient than

general list-recoverability?

Bad Challenge Set:

SCom(τ) × ⋯ × SCom(τ)

SCom(τ) = {i : 𝖵𝗂𝖾𝗐i consistent } ⊂ ℤq

Recurrent List-Recovery

List-recovery
for Random

Code 𝒞r

List-Recovery
for Random

Code 𝒞r
…

S S…

S̃ S̃…

S S…

List-recovery for
algebraic code
𝒞Alg : M → ℤt

Q

List of all messages such
that

m
𝒞r(𝒞Alg(m)i)j ∈ S

Same recurring
set S ≜ SCom(τ)

Recurrent List-Recovery
List-recovery for Reed-

Solomon Code
𝒞RS : M → ℤt

Q

List-recovery
for Random

Code 𝒞r

List-Recovery
for Random

Code 𝒞r
…

S S…

S̃ S̃…

S S…

List of all messages such
that

m
𝒞r(𝒞RS(m)i)j ∈ S

Let’s try to use a
simple algebraic

code to
instantiate

recurrent list-
recovery!

Recurrent List-Recovery
List-recovery for Reed-

Solomon Code
𝒞RS : M → ℤt

Q

List-recovery
for Random

Code 𝒞r

List-Recovery
for Random

Code 𝒞r
…

S S…

S̃ S̃…

S S…

List-recovery for a
single random code

 may result in an
output set that is

too large for RS list-
recovery!

For a fixed random
code, this happens
with non-negligible

probability over
Prover’s choice of S.

𝒞r
S̃

List of all messages such
that

m
𝒞r(𝒞RS(m)i)j ∈ S

Recurrent List-Recovery
List-recovery for Reed-

Solomon Code
𝒞RS : M → ℤt

Q

List-recovery
for Random

Code 𝒞r

List-Recovery
for Random

Code 𝒞r
…

S S…

S̃ S̃…

S S…

Reed-Solomon list-
decoding relies
crucially on the

polynomial
reconstruction

algorithm [Sud97,
GS98]

List of all messages such
that

m
𝒞r(𝒞RS(m)i)j ∈ S

Recurrent List-Recovery
List-recovery for Reed-

Solomon Code
𝒞RS : M → ℤt

Q

List-recovery
for Random

Code 𝒞r

List-Recovery
for Random

Code 𝒞r
…

S S…

S̃ S̃…

S S…

Polynomial reconstruction
only relies on the

aggregate list size

t

∑
i=1

| S̃ | ≥ |S | ⋅ t

List of all messages such
that

m
𝒞r(𝒞RS(m)i)j ∈ S

List-recovery for Reed-
Solomon Code
𝒞RS : M → ℤt

Q

List-recovery
for Random
Code 𝒞r,1

List-Recovery
for Random
Code 𝒞r,t

…

S S…

S̃1 S̃t…

S S…

If we use multiple
random codes, then
while some output
sets may be large,

others may be small.

Aggregate Size Analysis
List of all messages such

that
m

𝒞r(𝒞RS(m)i)j ∈ S

List-recovery
for Random
Code 𝒞r,1

…

S S…

S̃1 S̃t…

S S…

List-recovery for Reed-
Solomon Code
𝒞RS : M → ℤt

Q

List-Recovery
for Random
Code 𝒞r,t

Aggregate Size Analysis

For for
, we

achieve

with all but negligible
probability.

|S | = α ⋅ q
α ∈ (0,1) q = Õ(k)

∑ | S̃i | ≤ Õ(|S |)

List of all messages such
that

m
𝒞r(𝒞RS(m)i)j ∈ S

List-recovery
for Random
Code 𝒞r,1

…

S S…

S̃1 S̃t…

S S…

List-recovery for Reed-
Solomon Code
𝒞RS : M → ℤt

Q

List-Recovery
for Random
Code 𝒞r,t

Aggregate Size Analysis

Polynomial
reconstruction succeeds
for every choice of the

set (of the appropriate
size) with all but

negligible probability.

S

List of all messages such
that

m
𝒞r(𝒞RS(m)i)j ∈ S

Summary:

This is still a CI hash for the desired
relation.

For a statement :
x ∉ L

Rx = {((α1, …, αt), (β1, …, βt)) : ∃(γ1…, γt) s.t. V(x, ⃗α , ⃗β, ⃗γ) = 1}

Õ(k)Reed-Solomon +
Multiple Random Codes

Recurrent

We modify the MPC-in-the-head protocol [IKOS07] so that it has a bad challenge set
amenable to recurrent list-recovery. We instantiate the code with a Reed-Solomon code
concatenated with multiple random codes, and use aggregate size analysis to obtain a

quasi-linear block length!

Thank you!

Appendix

Reed-Solomon Codes + Polynomial Reconstruction

Def [RS60]: A Reed-Solomon code is parameterized by a base field size ,

a degree , a block length , and a set of values . takes as input a
polynomial of degree over , represented by its coefficients, and outputs the vector of

evaluations of on each of the points .

𝒞λ : ℤk+1
Q → ℤt

Q Q = Q(λ)

k = k(λ) t = t(λ) Aλ = {α1, …, αt} 𝒞λ

p k ℤQ k + 1

(p(α1), …, p(αt)) p αi

Reed-Solomon Codes + Polynomial Reconstruction

Def [RS60]: A Reed-Solomon code is parameterized by a base field size ,

a degree , a block length , and a set of values . takes as input a
polynomial of degree over , represented by its coefficients, and outputs the vector of

evaluations of on each of the points .

𝒞λ : ℤk+1
Q → ℤt

Q Q = Q(λ)

k = k(λ) t = t(λ) Aλ = {α1, …, αt} 𝒞λ

p k ℤQ k + 1

(p(α1), …, p(αt)) p αi

Polynomial Reconstruction:

• INPUT: Integers , . Distinct pairs , where .

• OUTPUT: A list of all polynomials of degree at most , which satisfy

.

kp np {(αi, yi)}i∈[np] αi, yi ∈ ℤQ

p(X) ∈ ℤQ[X] kp

p(αi) = yi, ∀ i ∈ [np]

