Computational Wiretap Coding from Indistinguishability Obfuscation

Yuval Ishai (Technion), Aayush Jain (CMU), Paul Lou (UCLA),
Amit Sahai (UCLA), Mark Zhandry (NTT Research)

Teaser: Interesting special case of the general wiretap problem

Teaser: Curious Coding Theory Question

Teaser: Curious Coding Theory Question

Hard to decode: Learning Parity with Noise (LPN) problem with constant error probability.

For the right choice of
parameters, Gaussian
elimination recovers x.

Teaser: Curious Coding Theorv Ouestion

Do there exist error-correcting codes that satisfy the following?
Binary 1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

For the right choice of
parameters, Gaussian
elimination recovers x

Teaser: Curious Coding Theorv Ouestion

Do there exist error-correcting codes that satisfy the following?
Binary 1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Until last year, no such codes known to satisfy both.

For the right choice of
parameters, Gaussian
elimination recovers x

Teaser: Curious Coding Theorv Ouestion

Do there exist error-correcting codes that satisfy the following?
Binary 1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Until last year, no such codes known to satisfy both.
Ishai, Korb, Lou, Sahai '22: Yes*, in the ideal obfuscation model (or non-standard VBB obfuscation assumptions)!

For the right choice of
parameters, Gaussian
elimination recovers x

Teaser: Curious Coding Theorv Ouestion

Do there exist error-correcting codes that satisfy the following?
Binary 1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Until last year, no such codes known to satisfy both.
Ishai, Korb, Lou, Sahai '22: Yes*, in the ideal obfuscation model (or non-standard VBB obfuscation assumptions)!

This Work: Yes*, assuming standard hardness assumptions!

General Setting: Wiretap Channel [Wyn75]

Goal: Alice wants to send a message to Bob without Eve learning it.

More General Setting: Wiretap Channel [Wyn75]

Goal: Alice wants to send a message to Bob without Eve learning it.

For what pairs of channels do wiretap coding schemes exist?

Intuitive Impossibility for Degraded Pairs

Impossible for channel pair ($B S C_{0.1}, B E C_{0.2}$). Eve can perfectly simulate $B S C_{0.1}$'s output distribution using an output of $B E C_{0.2}$.

Intuitive Impossibility for Degraded Pairs

Impossible for any channel pair ($C h B, C h E$) where Eve can perfectly simulate $C h B$'s output distribution using an output of $C h E$.

Intuitive Impossibility for Degraded Pairs

Impossible for any channel pair ($C h B, C h E$) where Eve can perfectly simulate $C h B$'s output distribution using an output of $C h E$.

Degradation: $C h B$ is a degradation of $C h E$ if and only if Eve can perfectly simulate $C h B$ using $C h E$.

Existence of Wiretap Coding Schemes

None for (ChB, ChE) where ChB is a degradation of $C h E$.

Do there exist wiretap coding schemes for non-degraded channel pairs (ChB, ChE)?

Existence of Wiretap Coding Schemes

> None for (ChB, ChE) where ChB is a degradation of ChE.

Csiszár, Korner '78: There are nondegraded channel pairs that do not have statistical wiretap coding schemes.

Existence of Wiretap Coding Schemes

None for $(C h B, C h E)$ where $C h B$ is a degradation of ChE.

Csiszár, Korner '78: There are nondegraded channel pairs that do not have statistical wiretap coding schemes.

Can cryptography enable wiretap coding schemes for a larger class of channel pairs?

Existence of Wiretap Coding Schemes

None for (ChB, ChE) where ChB is a degradation of ChE .

Csiszár, Korner '78: There are nondegraded channel pairs that do not have statistical wiretap coding schemes.

Ishai, Korb, Lou, Sahai '22: There exists a computational wiretap coding scheme for all non-degraded channel pairs in the Ideal Obfuscation Model (or non-std. VBB obfuscation).

Can we obtain computational wiretap coding schemes from standard assumptions?

Our Main Result: YES

Theorem: Assuming the existence of indistinguishability obfuscation (iO) and injective PRGs, there exists a computational wiretap coding scheme for any pair of non-degraded binary-input channels (ChB, ChE).

> Non-degraded binaryinput channel pairs with computational wiretap coding schemes from
> standard assumptions

Our Techniques

1. Using iO and injective PRGs, we construct a Hamming ball obfuscator.
>Construction uses a new gadget: PRG with Self-Correction.
$>$ Using this, we build computational wiretap coding schemes for binary asymmetric channels (BAC) and binary asymmetric erasure channels (BAEC).
2. We introduce a polytope characterization of degradation.
> Using this polytope characterization, we reduce the problem of constructing a computational wiretap coding scheme for any non-degraded binary-input channel pair to constructing one for (BAC, BAEC).

Focus of this talk: A computational wiretap coding scheme from $i O$ for $\left(C h B=B S C_{0.1}, C h E=B E C_{0.3}\right)$

* Construction idea easily extends to the non-degraded (BAC, BAEC) setting.
**See paper or slide appendix for extension to all non-degraded binary-input.

Indistinguishability Obfuscation (iO) [BGIRSVYO1]

Indistinguishability Obfuscation (iO) [BGIRSVYO1]

$$
C_{0} \xrightarrow{i O} \hat{C}_{0}
$$

Now known from standard hardness assumptions !! [JLS21]

New Gadget: PRG with Self-Correction (SCPRG)

1. Polynomial Stretch \& Pseudorandomness

New Gadget: PRG with Self-Correction (SCPRG)

1. Polynomial Stretch \& P

For this talk, $\varepsilon=\frac{1}{12}$. In general, some constant.

2. ε-Self-Correction (recovery works w.h.p. over choices of seeds)

where Seed' agrees with Seed on at least $\frac{1}{2}+\varepsilon$ fraction of bits,

Can efficiently recover

New Gadget: PRG with Self-Correction (SCPRG)

1. Polynomial Stretch \& Pseudorandomness

Seed

Bogdanov, Qiao '12: Goldreich PRG, even with linear stretch, is a SCPRG.
where Seed' agrees with Seed on at least $\frac{1}{2}+\varepsilon$ fraction of bits,

Can efficiently recover

Seed

New Gadget: PRG with Self-Correction (SCPRG)

1. Polynomial Stretch \& Pseudorandomness

Seed

Our Work: Injective SC-PRG from any injective PRG.

where Seed' agrees with Seed on at least $\frac{1}{2}+\varepsilon$ fraction of bits,

Can efficiently recover
Seed

$$
C h B=B S C_{0.1}, C h E=B E C_{0.3}
$$

Using ideal obfuscation [IKLS22]: Send a uniform random $r \in\{0,1\}^{n}$ across the wiretap channel. Then, send an obfuscation of f_{r}, encoded to Bob's channel.

Correctness:

$f_{r}\left(r_{B}\right)=m$ with high probability

$$
C h B=B S C_{0.1}, C h E=B E C_{0.3}
$$

Using ideal obfuscation [IKLS22]: Send a uniform random $r \in\{0,1\}^{n}$ across the wiretap channel. Then, send an obfuscation of f_{r}, encoded to Bob's channel.

$$
C h B=B S C_{0.1}, C h E=B E C_{0.3}
$$

Construction: Send a uniform random $r \in\{0,1\}^{n}$ across the wiretap channel. Then, send an $i O$ of f_{r}, encoded to Bob's channel.

Security: What Does Eve See?

Eve sees:

$$
r_{E}=\perp 010 \perp 1011 \perp
$$

$f_{r}\left(r^{\prime}\right):$

- If $\Delta\left(r^{\prime}, r\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Eve does not know:

$$
r=1010010110
$$

Security: What Does Eve See?

Security: What Does Eve See?

Eve sees:

$r_{E}=\perp 010 \perp 1011 \perp$

Eve does not know:

$$
r=1010010110
$$

Critical observation: In intermediate hybrids, this circuit can depend on the actual received string r_{E}.

Security: What Does Eve See?

Eve sees:

$r_{E}=\perp 010 \perp 1011 \perp$

$$
S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
$$

$$
f_{r}\left(r^{\prime}\right):
$$

- If $\Delta\left(r^{\prime}, r\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Eve does not know:

$$
r=1010010110
$$

Critical observation: In intermediate hybrids, this circuit can depend on the actual received string r_{E}.

Security: An Indistinguishable Viewpoint

Eve sees:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
\end{aligned}
$$

Split the hardcoded r into two substrings depending

Constants: $r_{S_{0,1}}, r_{S_{\perp}}, S_{\perp}$

- If $\Delta\left(r^{\prime}, r\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Security: An Indistinguishable Viewpoint

Eve sees:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp} \\
& f^{(1)}\left(r^{\prime}\right): \\
& \text { Constants: } r_{S_{0,1}, r_{S_{\perp^{\prime}}} S_{\perp} .}^{r^{\prime} \text { is Eve's }} \text { guess. } \\
& \text { - If } \Delta\left(r^{\prime}, r\right)<0.1 n+n^{0.9} \text { output } m \\
& \text { - Output } \perp \text { otherwise. }
\end{aligned}
$$

Security: An Indistinguishable Viewpoint

Eve sees:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
\end{aligned}
$$

Rewrite the Hamming distance condition

Constants: $r_{S_{0,1}}, r_{S_{\perp}}, S_{\perp}$.

- If $\Delta\left(r^{\prime} S_{\perp}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime}{S_{0,1}} r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Security: An Indistinguishable Viewpoint

Eve sees:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
\end{aligned}
$$

of Eve's guess.

$$
r=1010010110
$$

$$
r^{\prime} S_{\perp}, r^{\prime} S_{0,1} \text { are substrings }
$$

$f^{(1)}\left(r^{\prime}\right)$:
Constants: $r_{S_{0,1}}, r_{S_{\perp}}, S$

- If $\Delta\left(r^{\prime} S_{\perp}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime} S_{0,1}, r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Security: An Indistinguishable Viewpoint

Eve sees:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
\end{aligned}
$$

${ }^{r} S_{\perp}, r^{r} S_{0,1}$ are substrings of the sent random string.

Constants: $r_{S_{0,1}}, r_{S_{\perp}}, S_{\perp}$.

- If $\Delta\left(r^{\prime} S_{\perp^{\prime}} r_{S_{\perp}}\right)+\Delta\left(r^{\prime} S_{0,1}, r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Security: An Indistinguishable Viewpoint

Eve sees:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
\end{aligned}
$$

Functionally Equivalent to $f_{r}(\cdot)$!!

Constants: $r_{S_{0,1}}, r_{S_{\perp}}, S_{\perp}$.

- If $\Delta\left(r^{\prime} S_{S_{1}}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime} S_{0,1}, r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Security: An Indistinguishable Viewpoint

Eve sees:

- If $\Delta\left(r^{\prime} S_{S_{1}}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime} S_{0,1}, r S_{0,1}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Security: An Indistinguishable Viewpoint

Eve sees:

$$
r_{E}=\perp 010 \perp 1011 \perp
$$

$$
S_{\perp}=\left\{\begin{array}{c}
\text { Eve's best strategy is to uniformly guess for } r^{\prime} S_{\perp} \\
\text { There are exponentially many guesses that cause the function to } \\
\text { output } m .
\end{array}\right.
$$

We will compress them into a single branch that can be removed by a hybrid argument.

Constants: $r_{S_{0,1}}, r$

- If $\Delta\left(r^{\prime} S_{S_{1}}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime} S_{0,1} r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Using injective length-tripling SCPRGs

Eve sees:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
\end{aligned}
$$

Eve does not know:

$$
r=1010010110
$$

- If $\Delta\left(r^{\prime} S_{\perp}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime}{S_{0,1}} r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Using injective length-tripling SCPRGs

Eve sees:

$$
r_{E}=\perp 010 \perp 1011 \perp
$$

Eve does not know:
$S_{\perp}=\{1,510\} \begin{aligned} & \text { Replace with } S C P R G_{\varepsilon}\left(r_{S_{\perp}}\right) \text { for some choice of } \varepsilon \\ & \end{aligned}$ dependent on degradation condition. Here, $\varepsilon=\frac{1}{12}$.
$f^{(1)}\left(r^{\prime}\right)$:
Constants: $r_{S_{0,1}, r_{S_{\perp^{\prime}}}, S_{\perp} .}$

- If $\Delta\left(r^{\prime} S_{\perp}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime} S_{0,1}, r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Using injective length-tripling SCPRGs

Eve sees:
Eve does not know:

$$
r_{E}=\perp 010 \perp 1011 \perp
$$

$$
r=1010010110
$$

$$
S_{\perp}=\left\{1, \quad \begin{array}{l}
\text { Parameter } \varepsilon \text {, dependent on degradation } \\
\text { condition, is set so that Eve is unable to recover. }
\end{array}\right.
$$

$$
\text { Here, } \varepsilon=\frac{1}{12} \text {. }
$$

Constants: $r_{S_{0,1}}, \operatorname{SCPRG} G_{\varepsilon}\left(r_{S_{\perp}}\right), S_{\perp}$

- Let $\alpha:=S_{1} C P R G_{\varepsilon} \cdot \operatorname{Recover}\left(\operatorname{SCPRG} G_{\varepsilon}\left(r_{S_{\perp}}\right), r_{S_{\perp}}\right)$.
- If $\operatorname{SCPRG}_{\varepsilon}(\alpha) \neq \operatorname{SCPRG}_{\varepsilon}\left(r_{S_{\perp}}\right)$, then output \perp.
- Otherwise, set $r_{S_{\perp}} \leftarrow \alpha$.
- If $\Delta\left(r^{\prime} S_{\perp}, r_{S_{\perp}}\right)+\stackrel{\Delta}{\Delta}\left(r^{\prime} S_{0,1}, r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Using injective length-tripling SCPRGs

Eve sees:
Eve does not know:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
\end{aligned}
$$

$$
r=1010010110
$$

From Eve's point of view, $r_{S_{\perp}}$ is an unknown
uniform random string.
Constants: $r_{S_{0,1},} S C-P R G_{\varepsilon}\left(r_{S_{\perp}}\right), S_{\perp}$.

- Let $\alpha:=S C P R G_{\varepsilon} \cdot \operatorname{Recover}\left(\operatorname{SCPRG} G_{\varepsilon}\left(r_{S_{\perp}}\right), r_{S_{\perp}}\right)$.
- If $\operatorname{SCPRG}_{\varepsilon}(\alpha) \neq \operatorname{SCPRG}_{\varepsilon}\left(r_{S_{\perp}}\right)$, then output \perp.
- Otherwise, set $r_{S_{\perp}} \leftarrow \alpha$.
- If $\Delta\left(r_{S_{\perp}}^{\prime}, r_{S_{\perp}}\right)+\stackrel{\Delta}{\Delta}\left(r_{S_{0,1}^{\prime}}, r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Using injective length-tripling SCPRGs

Eve sees:

$$
\begin{aligned}
& r_{E}=\perp 010 \perp 1011 \perp \\
& S_{\perp}=\{1,5,10\} \quad S_{0,1}=[10] \backslash S_{\perp}
\end{aligned}
$$

Can therefore apply pseudorandomness property.
Constants: $r_{S_{0,1}}, R, S_{\perp}$

- Let $\alpha:=S C P R G_{\varepsilon}$. Recover $\left(R, r_{S_{\perp}}\right)$.
- If $\operatorname{SCPRG}_{\varepsilon}(\alpha) \neq R$, then output \perp.
- Otherwise, set $r_{S_{\perp}} \leftarrow \alpha$.
- If $\Delta\left(r^{\prime} S_{\perp}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime} S_{0,1}, r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

Using injective length-tripling SCPRGs

Eve sees:

Eve does not know:

$$
r=1010010110
$$

$S_{\perp}=\left\{1, \begin{array}{l}\text { With overwhelming probability } R \text { is not in the } \\ \text { range of the } \operatorname{SCPRG}, \text { so will be functionally }\end{array}\right.$ equivalent to null circuit.
$f^{(3)}\left(r^{\prime}\right)$:
Constants: $r_{S_{0,1}}, R, S_{\perp}$

- Let $\alpha:=S C P R G_{\varepsilon}$. R ver $\left(R, r_{S_{\perp}}\right)$.
- If $\operatorname{SCPRG}_{\varepsilon}(\alpha) \neq R$, then output \perp.
- Otherwise, set $r_{S_{\perp}} \leftarrow \alpha$.
- If $\Delta\left(r^{\prime} S_{\perp}, r_{S_{\perp}}\right)+\Delta\left(r^{\prime} S_{0,1}, r_{S_{0,1}}\right)<0.1 n+n^{0.9}$ output m
- Output \perp otherwise.

End of the Security Proof: Null Circuit

"Code Offset" construction of SCPRG

"Code Offset" construction of SCPRG

Injective PRG G.

List-decodable error correcting code \mathcal{C} for up to $\frac{1}{2}-\varepsilon$ error rate for any constant $\varepsilon>0$.
e.g. concatenated code of binary Reed-Solomon codes with Hadamard code
[Sudan, Trevisan, Vadhan '99, Sudan '00]

$$
S C P R G_{\varepsilon}\left(s_{1}, s_{2}\right):
$$

- Output $\left(s_{1}+\mathcal{C}\left(s_{2}\right), G\left(s_{2}\right)\right)$.

Pseudorandomness: s_{1} is uniform random, so $s_{1}+$
$\mathcal{C}\left(s_{2}\right)$ is uniform random. Then, apply pseudorandomness of $G\left(s_{2}\right)$.

"Code Offset" construction of SCPRG

Injective PRG G.

List-decodable error correcting code \mathcal{C} for up to $\frac{1}{2}-\varepsilon$ error rate for any constant $\varepsilon>0$.
e.g. concatenated code of binary Reed-Solomon codes with Hadamard code
[Sudan, Trevisan, Vadhan '99, Sudan ‘00]

$$
\operatorname{SCPR} G_{\varepsilon}\left(s_{1}, s_{2}\right):
$$

- Output $\left(s_{1}+\mathcal{C}\left(s_{2}\right), G\left(s_{2}\right)\right)$.

Self-correction: Can show, if $s_{1}^{\prime}, s^{\prime}{ }_{2} \approx s_{1}, s_{2}$ and for appropriate lengths of s_{1} and s_{2}, then $s_{1}{ }^{\prime} \approx s_{1}$.

Therefore, if $s_{1}{ }^{\prime}, s_{2}^{\prime} \approx s_{1}, s_{2}$ then can recover a polynomial size list containing s_{2} from $s_{1}+\mathcal{C}\left(s_{2}\right)$.

Use $G\left(s_{2}\right)$ iterate over list to find s_{2}, then recover s_{1}.

Recap

We sketched the construction and security proof for a computational wiretap coding scheme for the non-degraded (BSC, BEC) case via iO \& injective PRG.

Theorem: Assuming the existence of indistinguishability obfuscation (iO) and injective PRGs, there exists a computational wiretap coding scheme for any pair of non-degraded binary-input channels (ChB, ChE).

1. The given construction idea easily extends to the non-degraded (BAC, BAEC) setting.

Theorem: Assuming the existence of indistinguishability obfuscation (iO) and injective PRGs, there exists a computational wiretap coding scheme for any pair of non-degraded binary-input channels (ChB, ChE).

1. The given construction idea easily extends to the non-degraded ($B A C, B A E C$) setting.

Theorem: Assuming the existence of indistinguishability obfuscation (iO) and injective PRGs, there exists a computational wiretap coding scheme for any pair of non-degraded binary-input channels (ChB, ChE).

1. The given construction idea easily extends to the non-degraded (BAC, BAEC) setting.
2. The case of every non-degraded binary-input channel pair (ChB, ChE) reduces to (1).

Some Open Directions

- Expanding construction beyond binary-input channels.
- Characterize degradation for dimension three and beyond.
- Realizing computational wiretap coding from simpler cryptographic primitives or directly from hardness assumptions like LWE.
- Addressing the asterisk* in the initial riddle: Can we derandomize the encoding?

Thank you!

Appendix: The BAC/BAEC Case and General Binary-Input Case

Asymmetric Binary Channels

Binary Asymmetric Channel (BAC)

Binary Asymmetric Erasure Channel (BAEC)

$$
C h B=B A C_{p_{0}, p_{1}}, C h E=B A E C_{e_{0}, e_{1}}
$$

Construction: Same as before, except initial distribution is such that from Eve's view, each erasure equally likely to have been 0 or 1 .

$f_{r}\left(r^{\prime}\right):$

- If $\Delta\left(r^{\prime}, r\right)<\frac{e_{0} p_{1}+e_{1} p_{0}}{e_{0}+e_{1}} n+n^{0.9}$ output m
- Output \perp otherwise.

Then proceed by similar hybrid arguments as before.

Turns out, non-degradation condition for this channel pair
$e_{0} p_{1}+e_{1} p_{0}<e_{0} e_{1}$ precisely implies Bob has enough advantage to recover m.

Pairs of Binary-input Channels Reduce to the BAC/BAEC Case

Pair of Arbitrary Binary Input Channels

Consider $\left(B=\left[\begin{array}{lll}u_{11} & \cdots & u_{1 n_{B}} \\ u_{21} & \cdots & u_{2 n_{B}}\end{array}\right], E=\left[\begin{array}{lll}u_{11} & \cdots & u_{1 n_{E}} \\ u_{21} & \cdots & u_{2 n_{E}}\end{array}\right]\right)$ s.t. B not a degradation of E.

Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob's Output Alphabet

Consider $\left(B=\left[\begin{array}{lll}u_{11} & \cdots & u_{1 n_{B}} \\ u_{21} & \cdots & u_{2 n_{B}}\end{array}\right], E=\left[\begin{array}{lll}u_{11} & \cdots & u_{1 n_{E}} \\ u_{21} & \cdots & u_{2 n_{E}}\end{array}\right]\right)$ s.t. B not a degradation of E.

Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob's Output Alphabet

Consider $\left(B^{\prime}=\left[\begin{array}{ll}u_{11}^{\prime} & u_{12}^{\prime} \\ u_{21}^{\prime} & u_{22}^{\prime}\end{array}\right], E=\left[\begin{array}{lll}v_{11} & \cdots & v_{1 n_{E}} \\ v_{21} & \cdots & v_{2 n_{E}}\end{array}\right]\right)$ s.t. B not a degradation of E.

Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob's Output Alphabet

Consider $\left(B^{\prime}=\left[\begin{array}{ll}u_{11}^{\prime} & u_{12}^{\prime} \\ u_{21}^{\prime} & u_{22}^{\prime}\end{array}\right], E=\left[\begin{array}{lll}v_{11} & \cdots & v_{1 n_{E}} \\ v_{21} & \cdots & v_{2 n_{E}}\end{array}\right]\right.$) s.t. B not a degradation of E.

Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Simulating ChE with a BAEC

Consider $\left(B^{\prime}=\left[\begin{array}{ll}u^{\prime} & u_{11}^{\prime} \\ u^{\prime} & { }_{21} \\ u_{22}\end{array}\right], E=\left[\begin{array}{ccc}v_{11} & \cdots & v_{1 n_{E}} \\ v_{21} & \cdots & v_{2 n_{E}}\end{array}\right]\right)$ such that $\mathcal{P}\left(B^{\prime}\right) \nsubseteq \mathcal{P}(E), \mathcal{P}\left(B^{\prime}\right) \subseteq \mathcal{P}(B)$.

Imagine that Eve instead receives an output through $C h E^{\prime}=B A E C$ described by some matrix E^{\prime}, effectively giving Eve even more information, but hopefully not enough to simulate B^{\prime} !

Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Simulating ChE with a BAEC

Consider $\left(B^{\prime}=\left[\begin{array}{ll}u^{\prime} & u_{11}^{\prime} \\ u^{\prime} & { }_{21} \\ u_{22}\end{array}\right], E=\left[\begin{array}{ccc}v_{11} & \cdots & v_{1 n_{E}} \\ v_{21} & \cdots & v_{2 n_{E}}\end{array}\right]\right)$ such that $\mathcal{P}\left(B^{\prime}\right) \nsubseteq \mathcal{P}(E), \mathcal{P}\left(B^{\prime}\right) \subseteq \mathcal{P}(B)$.

Imagine that Eve instead receives an output through $C h E^{\prime}=B A E C$ described by some matrix E^{\prime}, effectively giving Eve even more information, but hopefully not enough to simulate B^{\prime} !

Finding BAEC E^{\prime} via Polytope Formulation

A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A)=\{A v: 0 \leq v \leq 1\}$.

A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A)=\{A v: 0 \leq v \leq 1\}$.

Theorem: Let $B \in \mathbb{R}^{2 \times n_{B}}$ and $E \in \mathbb{R}^{2 \times n_{E}}$ be arbitrary row-stochastic matrices. Then, $B \neq E \cdot S$ for every row stochastic matrix S if and only if $\mathcal{P}(B) \nsubseteq \mathcal{P}(E)$.

A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A)=\{A v: 0 \leq v \leq 1\}$.

Theorem: Let $B \in \mathbb{R}^{2 \times n_{B}}$ and $E \in \mathbb{R}^{2 \times n_{E}}$ be arbitrary row-stochastic matrices. Then, $\operatorname{Ch} B$ is not a degradation of $\operatorname{Ch} E$ if and only if $\mathcal{P}(B) \nsubseteq$ $\mathcal{P}(E)$.

A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.

Theorem: Let $B \in \mathbb{R}^{2 \times n_{B}}$ and $E \in \mathbb{R}^{2 \times n_{E}}$ be arbitrary row-stochastic matrices. Then, $\operatorname{Ch} B$ is not a degradation of $\operatorname{Ch} E$ if and only if $\mathcal{P}(B) \nsubseteq$ $\mathcal{P}(E)$.

Binary Asymmetric Erasure Channel (BAEC)

Polytope Example

The blue polytope corresponds to the BAC.

The red polytope corresponds to the BAEC.

Since the blue polytope is not contained in the red polytope, the BAC channel is not a degradation of the BAEC channel.

$$
\left[\begin{array}{cc}
1-p_{0} & p_{0} \\
p_{1} & 1-p_{1}
\end{array}\right] \quad\left[\begin{array}{cccc}
1-e_{0} & 0 & e_{0} \\
0 & 1-e_{1} & e_{1}
\end{array}\right]
$$

Binary Asymmetric Channel (BAC)

Reducing Eve's Channel to a BAEC

The blue polytope corresponds to the BAC.

The red polytope corresponds to some channel ChE.

Since the blue polytope is not contained in the red polytope, the BAC channel is not a degradation of ChE.

Reducing Eve's
 Channel to a BAEC

Apply the strict separating hyperplane theorem!

Take an extreme point of the BAC not inside the ChE polytope and separate it from the ChE polytope.

Olive polytope is a BAEC channel s.t. (1) ChE is a degradation and
(2) ChB is not a degradation.

Can find this polytope efficiently.

