Efficient NIZKs from LWE via
Polynomial Reconstruction and “MPC in the Head”

Riddhi Ghosal Paul Lou Amit Sahai

UCLA UCLA UCLA

NIZKs for all of NP from LWE [CCH+19, PS19]

| Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
\ Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-

J

knowledge interactive proof:

= _ _ _ _ s = — — _ e — —_

L € NP

NIZKs for all of NP from LWE [CCH+19, PS19]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
¢ knowledge interactive proof:

L € NP

x € L

NIZKs for all of NP from LWE [CCH+19, PS19]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
; knowledge interactive proof:

L S~ NP Karp reduction

x € L

NIZKs for all of NP from LWE [CCH+19, PS19]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
; knowledge interactive proof:

HASH FuncTioN Y

L & NP [: ; NIZK Argument in
; Karp reduction ‘ the CRS model

x € L

NIZKs for all of NP from LWE [CCH+19, PS19, HLR21]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
; knowledge interactive proof:

NIZK Argument for §

L € NP Karp reduction any commit-and-
open protocol
HLR21]
xXEL x' € 3COL

NIZKs for all of NP from LWE [CCH+19, PS19, HLR21]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
1 knowledge interactive proof:

NIZK Argument for §

L € NP Karp reduction any commit-and-
open protocol
[HLR21]
x €L x' € 3COL

- Large proof ;
size due to
parallel
- repetition!

NIZKs for all of NP from LWE [CCH+19, PS19, HLR21]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
\, Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
1 knowledge interactive proof:

NIZK Argument for §

L € NP Karp reduction any commit-and-
open protocol
[HLR21]
x €L

- Large proof ;
size due to
parallel
- repetition!

Expensive!

Our Work

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without
parallel repetition and Karp reductions. *

|

(

NIZK Argument in
the CRS model

MPC-in-the-Head
[IKOSO07]

Our Work

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without
parallel repetition and Karp reductions.

|

l

(

NIZK Argument in
the CRS model

on efficient perfectly
robust MPC protocols
[DIK10, BGJK21, GPS21]

to efficient NIZKs from

MPC-in-the-Head | * LWE!
[IKOS07] -

Main Theorem (informal)

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of
NP whose proof size is O(|C| + g - depth(C)) + poly(k) field elements in [, where k is the

security parameter, g = O(k), | F| > 2g, and C is an arithmetic circuit for the NP

verification function.

- [GGI+15] Can use FHE to bootstrap
an underlying NIZK to one with proof Y

Main Theorem (informal) size |w| + poly(k) bits.

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of W
NP whose proof size is O(|C| + g - depth(C)) + poly(k) field elements in [, where k is the

verification function.

security parameter, g = O(k), | F| > 2g, and C is an arithmetic circuit for the NP

Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

e Parvaresh-Vardy code concatenated with a single random code achieves block-size of
O(k'*¢) for any small constant ¢ > 0.

Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

e Parvaresh-Vardy code concatenated with a single random code achieves block-size of
O(k'*¢) for any small constant ¢ > 0.

e Can we generically apply this to MPC-in-the-head?

Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

e Parvaresh-Vardy code concatenated with a single random code achieves block-size of
O(k'*¢) for any small constant ¢ > 0.

e Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code!

Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

e Parvaresh-Vardy code concatenated with a single random code achieves block-size of
O(k'*¢) for any small constant ¢ > 0.

e Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But does not take advantage of the
special structure present in the MPC-in-the-head setting.

Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

e Parvaresh-Vardy code concatenated with a single random code achieves block-size of
O(k'*¢) for any small constant ¢ > 0.

e Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But does not take advantage of the
special structure present in the MPC-in-the-head setting.

We show that this yields less efficient proofs.

Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

e Parvaresh-Vardy code concatenated with a single random code achieves block-size of
O(k'*¢) for any small constant ¢ > 0.

e Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But does not take advantage of the
special structure present in the MPC-in-the-head setting.

e Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery.

Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

e Parvaresh-Vardy code concatenated with a single random code achieves block-size of
O(k'*¢) for any small constant ¢ > 0.

e Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But does not take advantage of the
special structure present in the MPC-in-the-head setting.

e Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use

polynomial reconstruction [Sud97, GS98] to achieve an improved block size of O(k).

MPC-in-the-Head [IKOS07]

MPC-in-the-Head [IKOS07]

[/{HNDON\ PAHR oF PARTIES (’Pi/’PSB

N\
OPENINGS To ViEw; , View;

— C ek CoNsIsTENCY
OF VIBEWS

MPC-in-the-Head [IKOS07]

Rawpor| PHIR oF PARTES (P, P,)

OPEVINGS To VIEW; |, View,

Check (ovsisTeney
OF VIBWS

(D

j NEU(LX// Wy T, ML\

l/{HI\JDm\/\ ?Pﬂ\(O ?HRT(&B (”Pi/’PSB
OPEVINGS To VIEW; |, View,

C ek Ccmma\:c,\/
OF VIBEWS

MPC-in-the-Head [IKOS07]

Rewpor| PHIR oF PARTIES (P, P,

5 ¢
W O?EMINGS 10 VieEw; ,\/lE\/\la,

5- MB 7 2 - >
<l> Check CoNSISTENCY

Our Modification of MPC-in-the-Head

| * RANDoM Ph D.

' Non-black-box [PRy Py

AN RN Jol OPEVINGS To ALL INCIDENT M56S

\ protocol! \ AND RANDOMNESS + INPUTS jﬂw P

USE NEXT(-)
To GHEW CoNSITTENCY

Our Modification of MPC-in-the-Head

ReiNDo PRy Py

N\
OPENINGS To ALL INCIDENT M356S
AND RANDOMNESS + INPUTS —or P,

USE NEXT ()
To Gl CoNSisTENY

Our Modification of MPC-in-the-Head

%j, Mawy R, PARTIES SeT S

AN
OPENINGS To ALL INCIDENT M356S
AND RANDoMNESS + INP;ATS Wﬂw PARTIES wé

USE NEXT ()
To Gl CoNSisTENY

Directly compute NP Verification
circuit. Avoids Karp reductions.

Z% Vk&w\[RANDOM ?AR‘UES/ DET S

AN
OPENINGS To A‘LL, INCIDENT MSGES
AND RANDOMNESS + INPUTS ch PARTIES w S

USE NEXT(+)
To Hedl C,O'\’S\S'[ENC,\{

Directly compute NP Verification
circuit. Avoids Karp reductions.

? Mawy R, PARTIES SeT S

AN
OPENINGS To /A[LL INCIDENT MSGES
AND RANDOMNESS + INPUTS qﬁw PARTIES w S

USE NEXT(+)
To Hedl C,O'\JS\STENC,\(

Directly compute NP Verification
circuit. Avoids Karp reductions.

%; Mawy R, PARTIES SeT S
Each party’s view is now W ¢
independently verifiable! W OPENINGS To ALL [INCIDENT M36S
AND RANDOMNESS + {NP;ATS qﬁw PARTIES w 5

USE NEXT(+)
To Hedl C,ONS\STEML\(

A Coding-Theoretic Instantiation
of Fiat-Shamir following [HLR21]

Amplifying Soundness via Parallel Repetition

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
knowledge interactive proof:

e negl-soundness against unbounded provers (statistical soundness)
® Honest-verifier zero-knowledge (HVZK)
‘e Public coin

Fiat-Shamir Paradigm [FS87}

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
\ Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
; knowledge interactive proof:

%? &ﬁg Fiat-Shamir
V ~ Paradigm [FS87] % i ﬁ
W ? (‘x,, w\ \/ (1)
SIS ,,;,,\‘ pe—— — W

TR T
X, X, ..., 0% ’
7 | %(x/°<|>
/ b b B, P = N (x,ou,ou)
Py = (x/o(o(‘/’-/0(17’1>
Y. Y,) {t S

Correlation Intractability [CGHO0O4]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
knowledge interactive proof:

!

\ /4

T — —

Soundness is preserved if [is sampled from a correlation

\ intractable hash family for an appropriate relation R.
T
MEECTETETR [CGHO4] Def’n: A hash family is correlation
| :&’”"”) intractable (Cl) for a sparse relation R if for all PPT &/
[, = x,d, 0,
ot Prh— w |(x,h(x)) € R| = negl

x «— A(h)

Correlation Intractability [CGHO0O4]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
knowledge interactive proof:

!

HA sr FUNCTIoN){

e [CGHO04] Def’n: A hash family # is correlation

D(t
‘ ’%E*M) intractable (Cl) for a sparse relation R if for all PPT &f
fb - x A, 0,
= H ot Prpegr [(x, h(x)) € R] = negl|

x «— A(h)

Correlation Intractability [CGHO0O4]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the

Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
knowledge interactive proof:

! =

HM FUNCTLON *){

%
REY Naively for a statement x & L:

{'D. =)’L ()(-/0(\/0(6>

= o) R, = { ((@ps s @)y Bps - n B)) = 3y 1) St V(X T B,

Correlation Intractability [CGHO0O4]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
\, Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
1 knowledge interactive proof:

HM FUNCTIoN 7{

") D(t
REY Naively for a statement x & L:
fa ™ %L (k/"('/‘*’a)
o= H) Ro={ (@), (B) 1 301 1) st VO @ A7) = 1
e Y, [CCH+19] “Bad Challenges” (there’s some response that fools V' into accepting) |

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((al,...,at), Broeon) 1 31y stV @B T) = 1} . ancton)

[PS19] addresses the case of

functions.

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((ocl, @) B o)) 1 3Gy SV T T) = 1}

By a guessing reduction, [CCH+19,
PS19] also addresses the case of
polynomially many bad challenges.

|

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((ocl, @) B o)) 1 3Gy SV T T) = 1}

Too many bad challenges for the

techniques of [CCH+19, PS19].

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((ocl, @) B o)) 1 3Gy SV T T) = 1}

B o
e &}VML&J
FOV

[HLR21] Use the product structure!

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

ko(\,‘*a,-"/%)
For a statement x & L: 5
Ol
R = {((ocl, @) B o)) 1 3Gy SV T T) = 1} . 5
(TG\«O—%AM
LD
k)
(pty-aipd
ip

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((ocl, @) B o)) 1 3Gy SV T T) = 1} .

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((ocl, @) B o)) 1 3Gy SV T T) = 1} .

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((ocl, @) B o)) 1 3Gy SV T T) = 1} .

Fiat-Shamir from Coding Theory [HLR21]

\ Parallel repetition gives a bad challenge set with a nice combinatorial structure.
l

For a statement x & L:

[HLR21] This is exactly list recovery!

Use a list-recoverable code!

Fiat-Shamir from Coding Theory [HLR21]

\ Parallel repetition gives a bad challenge set with a nice combinatorial structure.
l

For a statement x & L:

[HLR21] Use Parvaresh-Vardy code
concatenated with a single random
code.

|

Code Contenation

Algebraic Code

List-Recovery for Concatenated Codes

List of all messages m such

that €' ,(6 4,(m),); € S, ;

List-recovery List-Recovery
for Random for Random

Code €, Code @,

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

0(| \ /{3 Ky
R = {((al,...,at), Broeon) 1 31y stV @B T) = 1} 1 _

[HLR21] This is a Cl hash for the

desired relation.

R o)
fore >0

| Parvaresh-Vardy +
' Single Random Code

Fiat-Shamir from Coding Theory [HLR21]

\ Parallel repetition gives a bad challenge set with a nice combinatorial structure.
l

For a statement x & L:

' General list-recovery addresses
 product sets §; X S, X --- X §, where

each $; may differ.

4
==

Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

!

For a statement x & L:

Is general list-recoverability necessary

for the setting of MPC-in-the-Head?
* l

Bad Challenge Structure of MPC-in-the-Head

Bad Challenge Set:

SCOWl(T) X X SCOWL(T)

SCom(r) = {i . View; consistent } CcZ,

Wa

For our MPC-in-the-head protocol, we | g ka RanDoM PARTIES - SeT S
have a product sets S X § X -+ X § for <

o
OPENINGS To ALL [NCIDENT M36S
AND RANDOMNESS + INPUTS jﬂw PARTIES w S

a single set S, a much simpler W
structure. | JSE NEBXT (>

To (Hedd (o NSISTENCY

Bad Challenge Structure of MPC-in-the-Head

Bad Challenge Set:

SCOWl(T) X X SCOWL(T)

SCom(z:) = {i . View; consistent } CcZ,

Wa

Does this simpler bad challenge]
structure allow the usage ofa g Mawy R, PARTIES SeT S

y

derandomization technique both
simpler and more efficient than
general list-recoverability?

o
OPENINGS To ALL [NCIDENT M36S
AND RANDOMNESS + INPUTS jﬂw PARTIES w S

USE NEXT(-)
To Hedl CGNS\STEMC,\{

Recurrent List-Recovery

List of all messages m such

that & ,(€ 4,,(m),); € S

~ Same recurring |
List-recovery List-Recovery
for Random for Random

Code €, Code @,

- setS — SCom()

Recurrent List-Recovery

List of all messages m such
that € (€ g(m),); € S

‘Let’s try to use a
simple algebraic
code to
Instantiate
recurrent list-

|

recovery! List-recovery List-Recovery
| for Random for Random

T Code €, Code @,

~ List-recovery for a
 single random code

€ . may result in an

output set S that is

too large for RS list-

recovery!

For a fixed random

code, this happens

with non-negligible
probability over

List-recovery
for Random

Recurrent List-Recovery

List-Recovery
for Random

Code @,

List of all messages m such
that € (€ g(m),); € S

Recurrent List-Recovery

List of all messages m such
that € (€ g(m),); € S

Reed-Solomon list-
decoding relies
crucially on the

polynomial
reconstruction
algorithm [Sud97,

List-recovery List-Recovery
for Random for Random

Code €, Code @,

Recurrent List-Recovery

List of all messages m such
that € (€ g(m),); € S

Polynomial reconstruction
only relies on the
aggregate list size

[
IANEINEY
=1

List-recovery List-Recovery
for Random for Random

Code €, Code @,

Aggregate Size Analysis

List of all messages m such
that € (€ g(m),); € S

If we use multiple
" random codes, then

while some output

sets may be large,
others may be small.

List-recovery List-Recovery
for Random for Random

Code &G, | Code &,

Aggregate Size Analysis

List of all messages m such
that € (€ g(m),); € S

For | S| = a- g for
|

a € (0,1), g = Ok) we

achieve

Sisi<o(ist) _
List-recovery List-Recovery

for Random for Random
Code &G, | Code &,

with all but negligible
probability.

Aggregate Size Analysis

List of all messages m such
that € (€ g(m),); € S

Polynomial
reconstruction succeeds
for every choice of the
set S (of the appropriate
size) with all but
negligible probability.

List-recovery List-Recovery
for Random for Random

Code &G, | Code &,

Summary

We modify the MPC- m-the-head protocol [IKOSO07] so that it has a bad challenge set
| amenable to recurrent list-recovery. We instantiate the code with a Reed-Solomon code
l concatenated with multiple random codes, and use aggregate size analysis to obtain a

I —

For a statement x & L:

— {((ala "'9at)’ (,31, 9ﬁt)) : 3(}’1..-,%) s.t. V(x’ 7”5’ 7) - 1}

This is still a Cl hash for the desired

relation.

quasi-linear block length!

| Reed-Solomon +
Multiple Random Codes

Thank you!

Reed-Solomon Codes + Polynomial Reconstruction

_a

Def [RS60]: A Reed-Solomon code & : Zlgl — Z,, is parameterized by a base field size O = Q(1),

'a degree k = k(1), a block length ¢ = #(1), and a set of values A, = {a;,, ..., }. €, takes as input a

polynomial p of degree k over ZQ, represented by its kK 4+ 1 coefficients, and outputs the vector of

kevaluations (p((xl), ens p(at))of p on each of the points a..

\; R —— - — — — e - s R _

Reed-Solomon Codes + Polynomial Reconstruction

=

Def [RS60]: A Reed-Solomon code € : Zgrl — ZtQ is parameterized by a base field size O = Q(A),

\

(a degree k = k(1), a block length t = #(1), and a set of values A, = {a, ...,a,}. €, takes as input a

polynomial p of degree k over ZQ, represented by its kK 4+ 1 coefficients, and outputs the vector of

Kevalua’cions (p(al), ...,p(at)>ofp on each of the points «..

Polynomial Reconstruction:

\

'« INPUT: Integers k,, n,,. Distinct pairs{(a, Yi)ien » Where a;, y; € £,

- OUTPUT: A list of all polynomials p(X) € Z ;| X] of degree at most kp, which satisfy
| play) =y, Vie|[n,)

