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Our Work

We give an efficient (smaller proof size) base NIZK construction for NP from LWE without
parallel repetition and Karp reductions.
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on efficient perfectly
robust MPC protocols
[DIK10, BGJK21, GPS21]

to efficient NIZKs from

MPC-in-the-Head | * LWE!
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Main Theorem (informal)

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of
NP whose proof size is O(|C| + g - depth(C)) + poly(k) field elements in [, where k is the

security parameter, g = O(k), | F| > 2g, and C is an arithmetic circuit for the NP

verification function.




- [GGI+15] Can use FHE to bootstrap
an underlying NIZK to one with proof Y

Main Theorem (informal) size |w| + poly(k) bits.

Assuming the hardness of LWE, there exists NIZKs with computational soundness for all of W
NP whose proof size is O(|C| + g - depth(C)) + poly(k) field elements in [, where k is the

verification function.
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Overview: Our Technique

e [HLR21]’s coding theoretic approach to instantiating Fiat-Shamir: Block size of list-
recoverable error-correcting code determines efficiency.

e Parvaresh-Vardy code concatenated with a single random code achieves block-size of
O(k'*¢) for any small constant ¢ > 0.

e Can we generically apply this to MPC-in-the-head? Yes, using very specific properties
of the Parvaresh-Vardy code! But does not take advantage of the
special structure present in the MPC-in-the-head setting.

e Our work: The bad challenge set structure present in a modification of the [IKOS07]
protocol only needs recurrent list-recovery. Therefore, we can use qualitatively simpler
codes (Reed-Solomon codes concatenated with multiple random codes) and directly use

polynomial reconstruction [Sud97, GS98] to achieve an improved block size of O(k).
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Directly compute NP Verification
circuit. Avoids Karp reductions.
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Directly compute NP Verification
circuit. Avoids Karp reductions.

%; Mawy R, PARTIES  SeT S
Each party’s view is now W ¢
independently verifiable! W OPENINGS To ALL [INCIDENT M36S
AND RANDOMNESS + {NP;ATS qﬁw PARTIES w 5

USE NEXT(+)
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A Coding-Theoretic Instantiation
of Fiat-Shamir following [HLR21]



Amplifying Soundness via Parallel Repetition

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
knowledge interactive proof:

e negl-soundness against unbounded provers (statistical soundness)
® Honest-verifier zero-knowledge (HVZK)
‘e Public coin




Fiat-Shamir Paradigm [FS87}

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
\ Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
; knowledge interactive proof:
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Correlation Intractability [CGHO0O4]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
knowledge interactive proof:
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Soundness is preserved if [ is sampled from a correlation

\ intractable hash family for an appropriate relation R.
T
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| :&’”"”) intractable (Cl) for a sparse relation R if for all PPT &/
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x «— A(h)




Correlation Intractability [CGHO0O4]
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Correlation Intractability [CGHO0O4]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the

Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
knowledge interactive proof:

! =

HM FUNCTLON * ){

%
REY Naively for a statement x & L:

{'D. = )’L ()(-/0(\/0(6>

= o) R, = { ((@ps s @)y Bps - n B)) = 3y 1) St V(X T B,




Correlation Intractability [CGHO0O4]

Prior to our work, all known NIZK arguments for NP from LWE considered instantiating the
\, Fiat-Shamir paradigm on a parallel repetition of a public-coin honest-verifier zero-
1 knowledge interactive proof:

HM FUNCTIoN 7{

") D(t
REY Naively for a statement x & L:
fa ™ %L (k/"('/‘*’a)
o= H ) Ro={ (@), (B ) 1 301 1) st VO @ A7) = 1
e Y, [CCH+19] “Bad Challenges” (there’s some response that fools V' into accepting) |




Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:
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[PS19] addresses the case of

functions.
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Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((ocl, @) B o)) 1 3Gy SV T T) = 1}

By a guessing reduction, [CCH+19,
PS19] also addresses the case of
polynomially many bad challenges.
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techniques of [CCH+19, PS19].




Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

R = {((ocl, @) B o)) 1 3Gy SV T T) = 1}

B o
e &}VML&J
FOV

[HLR21] Use the product structure!
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Fiat-Shamir from Coding Theory [HLR21]

\ Parallel repetition gives a bad challenge set with a nice combinatorial structure.
l

For a statement x & L:

[HLR21] This is exactly list recovery!

Use a list-recoverable code!




Fiat-Shamir from Coding Theory [HLR21]

\ Parallel repetition gives a bad challenge set with a nice combinatorial structure.
l

For a statement x & L:

[HLR21] Use Parvaresh-Vardy code
concatenated with a single random
code.

|




Code Contenation

Algebraic Code




List-Recovery for Concatenated Codes

List of all messages m such

that €' ,(6 4,(m),); € S, ;

List-recovery List-Recovery
for Random for Random
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Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

For a statement x & L:

0(| \ /{3 Ky
R = {((al,...,at), Broeon ) 1 31y stV @B T) = 1} 1 _

[HLR21] This is a Cl hash for the

desired relation.

R o)
fore >0

| Parvaresh-Vardy +
' Single Random Code




Fiat-Shamir from Coding Theory [HLR21]

\ Parallel repetition gives a bad challenge set with a nice combinatorial structure.
l

For a statement x & L:

' General list-recovery addresses
 product sets §; X S, X --- X §, where

each $; may differ.

4
==



Fiat-Shamir from Coding Theory [HLR21]

Parallel repetition gives a bad challenge set with a nice combinatorial structure.

!

For a statement x & L:

Is general list-recoverability necessary

for the setting of MPC-in-the-Head?
* l



Bad Challenge Structure of MPC-in-the-Head
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Bad Challenge Structure of MPC-in-the-Head

Bad Challenge Set:

SCOWl(T) X X SCOWL(T)

SCom(z:) = {i . View; consistent } CcZ,

Wa

Does this simpler bad challenge ]
structure allow the usage ofa g Mawy R, PARTIES  SeT S

y

derandomization technique both
simpler and more efficient than
general list-recoverability?

o
OPENINGS To ALL [NCIDENT M36S
AND RANDOMNESS + INPUTS jﬂw PARTIES w S

USE NEXT(-)
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Recurrent List-Recovery

List of all messages m such

that & ,(€ 4,,(m),); € S

~ Same recurring |
List-recovery List-Recovery
for Random for Random

Code €, Code @,

- setS — SCom()




Recurrent List-Recovery

List of all messages m such
that € (€ g(m),); € S

‘Let’s try to use a
simple algebraic
code to
Instantiate
recurrent list-

|

recovery! List-recovery List-Recovery
| for Random for Random

T Code €, Code @,




~ List-recovery for a
 single random code

€ . may result in an

output set S that is

too large for RS list-

recovery!

For a fixed random

code, this happens

with non-negligible
probability over

List-recovery
for Random

Recurrent List-Recovery

List-Recovery
for Random

Code @,

List of all messages m such
that € (€ g(m),); € S




Recurrent List-Recovery

List of all messages m such
that € (€ g(m),); € S

Reed-Solomon list-
decoding relies
crucially on the

polynomial
reconstruction
algorithm [Sud97,

List-recovery List-Recovery
for Random for Random

Code €, Code @,




Recurrent List-Recovery

List of all messages m such
that € (€ g(m),); € S

Polynomial reconstruction
only relies on the
aggregate list size

[
IANEINEY
=1

List-recovery List-Recovery
for Random for Random

Code €, Code @,




Aggregate Size Analysis

List of all messages m such
that € (€ g(m),); € S

If we use multiple
" random codes, then

while some output

sets may be large,
others may be small.

List-recovery List-Recovery
for Random for Random

Code &G, | Code &,




Aggregate Size Analysis

List of all messages m such
that € (€ g(m),); € S

For | S| = a- g for
|

a € (0,1), g = Ok) we

achieve

Sisi<o(ist) _
List-recovery List-Recovery

for Random for Random
Code &G, | Code &,

with all but negligible
probability.




Aggregate Size Analysis

List of all messages m such
that € (€ g(m),); € S

Polynomial
reconstruction succeeds
for every choice of the
set S (of the appropriate
size) with all but
negligible probability.

List-recovery List-Recovery
for Random for Random

Code &G, | Code &,




Summary

We modify the MPC- m-the-head protocol [IKOSO07] so that it has a bad challenge set
| amenable to recurrent list-recovery. We instantiate the code with a Reed-Solomon code
l concatenated with multiple random codes, and use aggregate size analysis to obtain a

I —

For a statement x & L:

— {((ala "'9at)’ (,31, 9ﬁt)) : 3(}’1..-,%) s.t. V(x’ 7”5’ 7) - 1}

This is still a Cl hash for the desired

relation.

quasi-linear block length!

| Reed-Solomon +
Multiple Random Codes




Thank you!






Reed-Solomon Codes + Polynomial Reconstruction

_a

Def [RS60]: A Reed-Solomon code & : Zlgl — Z,, is parameterized by a base field size O = Q(1),

'a degree k = k(1), a block length ¢ = #(1), and a set of values A, = {a;,, ..., }. €, takes as input a

polynomial p of degree k over ZQ, represented by its kK 4+ 1 coefficients, and outputs the vector of

kevaluations (p((xl), ens p(at))of p on each of the points a..
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Reed-Solomon Codes + Polynomial Reconstruction

=

Def [RS60]: A Reed-Solomon code € : Zgrl — ZtQ is parameterized by a base field size O = Q(A),

\

(a degree k = k(1), a block length t = #(1), and a set of values A, = {a, ...,a,}. €, takes as input a

polynomial p of degree k over ZQ, represented by its kK 4+ 1 coefficients, and outputs the vector of

Kevalua’cions (p(al), ...,p(at)>ofp on each of the points «..

Polynomial Reconstruction:

\

'« INPUT: Integers k,, n,,. Distinct pairs{(a, Yi)ien » Where a;, y; € £,

- OUTPUT: A list of all polynomials p(X) € Z ;| X] of degree at most kp, which satisfy
| play) =y, Vie|[n,)




