Hard Languages in NP N coNP and
NIZK Proofs from Unstructured Hardness

Riddhi Ghosal, Yuval Ishai, Alexis Korb, Eyal Kushilevitz, Paul Lou, Amit Sahai

Hardness of NP N coONP

* Hard Language: Fully specified decision problems not in P.

Hardness of NP N coONP

» Hard Language: Fully specified decision problems not in P.

* NP N coNP: Languages for which there exists an efficient NP verifier for both
membership and non-membership.

Hardness of NP N coONP

» Hard Language: Fully specified decision problems not in P.

* NP N coNP: Languages for which there exists an efficient NP verifier for both
membership and non-membership.

* Candidate hard languages in NP N coNP are highly structured and few.
* Languages related to factoring and discrete log.
* Stochastic Games [Condong2]
* Construction from OWPs [Brassard7g, BennettGill81]
* Only known constructions of OWPs rely on factoring or discrete log

Hardness of NP N coONP

Hard Language: Fully specified decision problems not in P.

NP N coNP: Languages for which there exists an efficient NP verifier for both
membership and non-membership.

Candidate hard languages in NP N coNP are highly structured and few.
* Languages related to factoring and discrete log.
* Stochastic Games [Condong2]
* Construction from OWPs [Brassard7g, BennettGill81]
* Only known constructions of OWPs rely on factoring or discrete log

Note: This is not the case for promise problems.

Hardness of NP N coONP

Hard Language: Fully specified decision problems not in P.

NP N coNP: Languages for which there exists an efficient NP verifier for both
membership and non-membership.

Candidate hard languages in NP N coNP are highly structured and few.
* Languages related to factoring and discrete log.
* Stochastic Games [Condong2]
* Construction from OWPs [Brassard7g, BennettGill81]
* Only known constructions of OWPs rely on factoring or discrete log.

Note: This is not the case for promise problems.
Maybe: Unclear how hard NP N coNP actually is?

* Most current candidates broken by quantum algorithmes.
* P = NP N coNP holds for simple computational models such as decision trees.
* No complete languages known.

Hardness of NP N coONP

Hard Language: Fully specified decision problems not in P.

NP N coNP: Languages for which there
membership and non-membership.

Candidate hard languages in NP N coN
* Languages related to factoring and discret¢
* Stochastic Games [Condong2]
* Construction from OWPs [Brassard7g, Beni
* Only known constructions of OWPs rel

Note: This is not the case for promise pr
Maybe: Unclear how hard NP N coNP a

* Most current candidates broken by quantul

o st
e P o Flw e
> Cotmputesl < pelyllogn)
Steps.
hhops TeZ =D u vt B 3
T DoNT believe So sviee I
(S 4m :

* P = NP N coNP holds for simple computauornarmouers sucrras uecisiornrurees:

* No complete languages known.

Hardness of NP N coONP

Found in Jack Edmonds'Yard (RS ute a2

are P
W?"h Peter Sarnak’s Lecture

M\ 4 2 f 'g(a) Com 'ge
et 3 amgutd oM Fdj(&ﬁ‘n)
Steps.

v_reI }/‘é‘-l.a.!;s gé.‘f '—'—"-)/’*L Wﬂ‘??*“‘t‘i
Pt 1T DonT believe So v I

o belseve W&M W}A
Yot o P

tauormarrmouers sucrras uecrsiorn trees:.

Hardness of NP N coONP

» Hard Language: Fully specified decision problems not in P.

* NP N coNP: Languages for which there exists an efficient NP verifier for both
membership and non-membership.

* Candidate hard languages in NP N coNP are highly structured and few.
* Languages related to factoring and discrete log.
* Stochastic Games [Condong2]
* Construction from OWPs [Brassard7g, BennettGill81]
* Only known constructions of OWPs rely on factoring or discrete log.

* Note: This is not the case for promise problems.
* Maybe: Unclear how hard NP N coNP actually is?

* Most current candidates broken by quantum algorithmes.
* P = NP N coNP holds for simple computational models such as decision trees.
* No complete languages known.

Hardness of NP N coONP

» Hard Language: Fully specified decision problems not in P.

* NP N coNP: Languages for which there exists an efficient NP verifier for both
membership and non-membership.

* Candidate hard languages in NP N coNP are highly structured and few.

: Can we build a hard language in

NP N coNP from unstructured assumptions?

Wote: [NIS 1S NOT the case Tor promise problems.
* Maybe: Unclear how hard NP N coNP actually is?

* Most current candidates broken by quantum algorithmes.
* P = NP N coNP holds for simple computational models such as decision trees.
* No complete languages known.

Which assumptions represent unstructured
hardness?
Random

Unstructured Assumptions: assumptions that follow from random oracles.

11

Which assumptions represent unstructured

hardness?
Random

Private Key Encryption (Unstructured) vs Public Key Encryption (Structure)
[Formalized by Impagliazzo and Rudich]

Unstructured Assumptions: assumptions that follow from random oracles.

12

Which assumptions represent unstructured
hardness?

Injective OWFs Injective OWFs
(Slightly (Length Tripling)
Expanding)

Unstructured Assumptions: assumptions that follow from random oracles.

13

Which assumptions represent unstructured
hardness?

0:{0,1}" - {0,1}" 0:{0,1}" - {0,1}**°) 0:{0,1}" —» {0,1}°"

Injective OWFs Injective OWFs
(Slightly (Length Tripling)
Expanding)

Unstructured Assumptions: assumptions that follow from random oracles.

14

Which assumptions represent unstructured

hardness?

[Structured]

0:{0,1}" - {0,1}" 0:{0,1}" - {0,1}"+°)

Injective OWFs
(Slightly
Expanding)

[Unstructured]

0:{0,1}" - {0,1}3"

Injective OWFs
(Length Tripling)

Unstructured Assumptions: assumptions that follow from random oracles.

15

Which assumptions represent unstructured
hardness?

Bilinear :
Factoring
Injective Random Maps
OWFs Oracles
Collision- IM
Resistant Hash

Functions Random oracles are one-way
Unstructured Assumptions: assumptions that follow from random oracles.

and collision-resistant.

16

Which assumptions represent unstructured
hardness?

{ Leng?th tripling random
oracle is injective w.h.p.

Bilinear :
Factoring
Injective Random Maps
OWFs Oracles
Collision- IM
Resistant Hash
Functions UP Z RP

Unstructured Assumptions: assumptions that follow from random oracles.

17

Which assumptions represent unstructured
hardness?

Bilinear .
Factoring
Injective Random Maps
OWEFs Oracles

Collision- I
Resistant Hash niactive OWE
Functions Injective S
U RE {lmply UP £ RP

Unstructured Assumptions: assumptions that follow from random oracles.

18

Which assumptions represent unstructured
hardness?

Bilinear
Factoring
m Maps

Don’t know how to build the rest
heuristically from random oracles

Collision-
Resistant Hash
Functions UP Z RP

Unstructured Assumptions: assumptions that follow from random oracles.

Injective

19

Which assumptions represent unstructured
hardness?

Bilinear :
Factoring
Injective Random Maps
OWEFs Oracles
Structured
Unstructured
Collision-
Resistant Hash
Functions UP Z RP

Unstructured Assumptions: assumptions that follow from random oracles.

20

Hardness of NP N coNP
from Unstructured Assumptions

* No known random oracle separation of P and NP N coNP
* [BennettGill81] Open problem since 1981.
 [Tardos89] details some difficulties with this approach.

21

Hardness of NP N coNP
from Unstructured Assumptions

* No known random oracle separation of P and NP N coNP
* [BennettGill81] Open problem since 1981.
 [Tardos89] details some difficulties with this approach.

* No black-box constructions of hard languages in NP N coNP from

* OWFs [BlumIimpagliazzo87, Rudich88, KahnSaksSmythoo]

* Injective OWFs and Indistinguishability Obfuscation (iO)
[BitanskyDegwekarVaikuntanathan21]

* Implies no black-box constructions from many cryptographic primitives since
iO + OWFs can be used to build a lot of crypto.

22

Hardness of NP N coNP
from Unstructured Assumptions

* No known random oracle separation of P and NP N coNP
* [BennettGill81] Open problem since 1981.
 [Tardos89] details some difficulties with this approach.

* No black-box constructions of hard languages in NP N coNP from

* OWFs [BlumIimpagliazzo87, Rudich88, KahnSaksSmythoo]

* Injective OWFs and Indistinguishability Obfuscation (iO)
[BitanskyDegwekarVaikuntanathan21]

* Implies no black-box constructions from many cryptographic primitives since
iO + OWFs can be used to build a lot of crypto.

Can we build a hard language in
NP N coNP from random oracles?

23

Random Oracle Separations of Complexity Classes

Random Oracle Separations of Complexity Classes

* Alot of exciting work in complexity theory
* [BennettGill81] P, NP, and coNP separated by random oracles.
* [RossmanServedioTanis] Polynomial hierarchy is infinite relative to a random oracle.

* [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random
oracle.

25

Random Oracle Separations of Complexity Classes

* Alot of exciting work in complexity theory
* [BennettGill81] P, NP, and coNP separated by random oracles.
* [RossmanServedioTanis] Polynomial hierarchy is infinite relative to a random oracle.

* [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random
oracle.

* Random Oracle Hypothesis [BG81]: random oracle separations of complexity
classes imply a non-random-oracle separation of the same classes

* [CCGHHRRg2] False for IP and PSPACE
* Plausibly true for feasible complexity classes.

 Similar hypothesis in cryptography:
* Can heuristically construct a concrete language by instantiating the random oracle with a
cryptographic hash function.

26

Our Results

Main Theorem

_

If there exists injective OWFs, then with probability 1 over the choice of a
random oracle O, P° = NP° n coNP?

J

27

Our Results

Main Theorem

_

If there exists injective OWFs, then with probability 1 over the choice of a

random oracle O, P° = NP° n coNP?

J

Our proof is constructive!

Cryptographic
Hash Function H Polytime
Algorithm

>

Injective OWF ——

Candidate language in
(NP N coNP)\P

28

Our Results

Main Theorem

If there exists|injective OWFs) then with probability 1 over the choice of a
N /Jrandom oracle 0, P® # NP° n coNP?

L
LSufﬁces to assume UP € RP which is}

J

implied by injective OWFs.

Our Results

Main Theorem

_

If UP € RP, then with probability 1 over the choice of a random oracle 0,
P? = NP° N coNP?

J

30

Our Results

Main Theorem

_

If UP € RP, then with probability 1 over the choice of a random oracle 0,
P? = NP° N coNP?

J

Main New Ingredient:
A Non-Interactive Zero Knowledge (NIZK) proof system in the random
oracle model!
(Note: Fiat-Shamir only gives NIZK arguments.)

31

Our Results

Main Theorem

If UP € RP, then with probability 1 over the choice of a random oracle 0,
P? = NP° N coNP?

N J
(NIZK Proofs in Random Oracle Model \
There exists an (unbounded-prover) NIZK proof system for NP in the
L random oracle model.)

Our Results

Main Theorem

If UP € RP, then with probability 1 over the choice of a random oracle 0,
P? = NP° N coNP?

N J
(NIZK Proofs in Random Oracle Model \
There exists an (unbounded-prover) NIZK proof system for NP in the
L random oracle model.)

Can also build NIZK Proofs in URS model from a concrete

cryptographic object we call
&-Dense-PRHFs.

O-Dense-Pseudorandom-Hash-Functions

* Functions H:{0,1}" — {0,1}" satisfying three properties:
1. Pseudorandom Output:

* Let X be uniform over {o,1}" and U,,, be uniform over {o,1}™.
* ThenH(X) =, Uy,

34

O-Dense-Pseudorandom-Hash-Functions

* Functions H:{0,1}" — {0,1}" satisfying three properties:
1. Pseudorandom Output:
* Let X be uniform over {o,1}" and U,,, be uniform over {o,1}™.
* ThenH(X) =, Uy,
2. 0-Dense: The image is 6-Dense in the codomain.
 Constant § € (0,1) which is “efficiently approximable”.
* Pr|U,, € Image(H)] = § + negl(n)

35

O-Dense-Pseudorandom-Hash-Functions

* Functions H:{0,1}" — {0,1}" satisfying three properties:

1. Pseudorandom Output:
* Let X be uniform over {o,1}" and U,,, be uniform over {o,1}™.
* ThenH(X) =, Uy,

2. 0-Dense: The image is 0-Dense in the codomain.
 Constant § € (0,1) which is “efficiently approximable”.
* Pr|U,, € Image(H)] = § + negl(n)

3. Preimage Pseudorandomness:
e Let Y be uniform over Image(H) and let H~1(y) output a random

preimage of y.

« Then (X,H(X)) =, (H"1(Y),Y)

36

Our Results

Main Theorem

If UP € RP, then with probability 1 over the choice of a random oracle 0,

P9 = NP° Nn coNP®
_ J

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the

random oracle model.
N J

NIZK Proofs in URS model from 6-Dense-PRHFs

Assuming there exists a 6-Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS
_ model. -

Our Results

Main Theorem

If UP € RP, then with probability 1 over the choice of a random oracle 0,
P? = NP° N coNP?

_ J
[Implied by Random Oracle
L- No known instantiation from other unstructured assumptions
The . YN . i
random OM
_ /
(\ \)

NIZK Proofs in URS model fromﬁS-Dense-PRHFs

Assuming there exists a 6-Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS
_ model. -

NIZK Proofs for NP in URS Model [BFM88]

* Goal: Prover P is trying to prove to a verifierVthat x € L.
* Setting:

* Unbounded prover P

» Computationally bounded (poly-sized) verifier V

* URS model: P andV share uniformly random string

* Properties
* Completeness: If all players are honest and x € L, the verifier accepts.

* Soundness: If x € L, no unbounded cheating prover should be able to
convince an honest verifier to accept.

» Zero Knowledge: Security against dishonest poly-sized verifiers.
* There exists a PPT Sim such that Vx € L, Sim(x) = (urs, P(urs, x))

39

NIZK Proofs for NP in Random QOracle Model

* Goal: Prover P is trying to prove to a verifierVthat x € L.
* Setting:
* Unbounded prover P
» Computationally bounded (poly-sized) verifier V
* Random Oracle model: P andV have query access to a random oracle.

* Properties
* Completeness: If all players are honest and x € L, the verifier accepts.

* Soundness: If x € L, no unbounded cheating prover should be able to
convince an honest verifier to accept.

* Zero Knowledge: Security against dishonest verifiers that can make
polynomially many queries to the random oracle.

* There exists a PPT Sim = (SimO, SimP) such that Vx € L, “(SimO, SimP(x))
= (0, P9(x))"

40

Previous Work on NIZKs

Proofs
(secure against unbounded
prover)

Arguments
(secure against PPT prover)

URS
(uniform
random string)

OWPs [FLS90, BYg6, CL18]
DLIN on bilinear groups [GOS06]
iO and OWFs [BPas]

Random oracle [FS86]
Many assumptions

SRS
(structured
random string)

OWEFs [Psos] (unbounded prover)
Lattices [CCH+19, PS19]
Many assumptions

Many assumptions

41

Previous Work on NIZKs

Proofs Arguments
(secure against unbounded (secure against PPT prover)
prover)
URS e OWPs[FLSq0, BYg6, CL18] « Random oracle [FS86]
(uniform * DLIN on bilinear groups [GOS06] * Many assumptions

random string) | © and OWFs [BP15]

—
SRS « OWFs [Psos] (unbounded pro * Many assumptions
(structured e Lattices [CCH+19, PS19]

random string) | "y assumptions Structured Hardness

(and not post-quantum,
except maybe iO)

-)

42

Previous Work on NIZKs

Proofs Arguments
(secure against unbounded (secure against PPT prover)
prover)
URS e OWPs[FLSq0, BYg6, CL18] * Random oracle [FS86]
(uniform * DLIN on bilinear groups [GOS06] * Many assumptions

« {0 and OWFs [BP15]

random string) |, Random oracle or 6-Dense-PRHF

[Our Work] —
SRS « OWFs [Pso5] (unbounded prov * Many assumptions
(structured e Lattices [CCH+19, PS19]
random string) |~ 2Ny assumptions (Unstructured 1
Hardness

43

Our Results

Main Theorem

If UP € RP, then with probability 1 over the choice of a random oracle 0,

P9 = NP° Nn coNP®
_ J

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the

random oracle model.
N J

NIZK Proofs in URS model from 6-Dense-PRHFs

Assuming there exists a 6-Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS
_ model. -

Separating
P%and NP° N coNP?

Separating P°and NPY N coNPY

* Ingredients
* Injective OWF: f

* NIZK Proof (P©, V), Sim) in Random Oracle model for the language
e L' ={y:3x, f(x) = y}:"“y has a preimage”

46

Separating P°and NPY N coNPY

* Ingredients
* Injective OWF: f

* NIZK Proof (P©, V), Sim) in Random Oracle model for the language
e L' ={y:3x, f(x) = y}:"“y has a preimage”

 L={(y,i):(3x, f(x) =y Ax; = 1)} Promise : y always has a preimage

47

Separating P°and NPY N coNPY

* Ingredients
* Injective OWF: f

* NIZK Proof (P©, V), Sim) in Random Oracle model for the language
e L' ={y:3x, f(x) = y}:"“y has a preimage”

 L={(y,i):(3x, f(x) =y Ax; = 1)} Promise : y always has a preimage

* Our Language (with random oracle O)

« L0 ={(y,i,m):Ax, f(x) =yAx; = 1) AV (y,n) =1}
"y has a preimage x where x; = 1" and
"1t is a valid proof that y has a preimage”

48

Separating P°and NPY N coNPY

* Ingredients
* Injective OWF: f

* NIZK Proof (P©, V), Sim) in Random Oracle model for the language
e L' ={y:3x, f(x) = y}:"“y has a preimage”

 L={(y,i):(3x, f(x) =y Ax; = 1)} Promise : y always has a preimage

° Our},:nru 1nna (hwith randam Aaracla O
. Similar proof also works assuming a language)
L" € UP\RP

in which case
L' ={y:3w,(y,w) € Ry, }
kLO ={(y,i,m): @w, (y,w) € R, Aw; = 1) AVO(y,m) = 1})

49

L° €
NP

L° € NPY

L? ={(,im): A%, f(x) =y Ax; = D AVO(y,m) = 1}

Dyp((y, i, 1), w)

1. Checkif VO(y,) verifies. If not, then (y,i,m) & L° . Reject.
2. Check that for witness w, f(w) = y. If not, reject.

3. Acceptifw; = 1.

The correctness of Dﬁp((y, i,), w) follows from definition of L.

51

If NIZK perfectly sound*, Pry[L° € coNPY]=1

If NIZK perfectly sound*, Pry[LY € coNPY]=1

[°={(y,i,m):(@x,f(x) =yAx; =1V V°(ymr) =0)} }

DCOoNP((Yr [, 1), W)

1. Checkif VO(y,) verifies. If not, then (y,i,m) € L° . Accept.
* Otherwise, soundness of NIZK proof ensures 3x, f(x) = y.
* This x is unique since fis injective!
* Expect witness w to be this unique x.

2. Checkthat for witness w, f(w) = y. If not, reject.

3. Acceptifw; = 0.

53

If NIZK is ZK, Pry[L° ¢ P°] =1

If NIZK is ZK, Pry[L® ¢ PP] = 1

= {0imExf@ =y Ax = DAVOGm =1} |

Assume Pry [L° € P9] > 0.

Theorem from [BG81] implies there exists a polytime Turing Machine D) which decides
L®) with probability 1 over the choice of O.

55

If NIZK is ZK, Pry[L° & P9] = 1

= {0imExf@ =y Ax = DAVOGm =1} |

Assume Pry [L° € P9] > 0.

Theorem from [BG81] implies there exists a polytime Turing Machine D) which decides
L®) with probability 1 over the choice of O.

Then, w.h.p we could invert OWF f!

f-Inverter(y):
1. Foreachi:
a. Use NIZK simulator to simulate a proof that y has a preimage.
b. Setx;= DS"O(y,i,m) (using NIZK simulator to simulate random oracle queries).
|. If m was a real proof, then D would output correct x..
ll. Zero knowledge ensures that D acts similarly on simulated proof!
2. Outputx.

56

Constructing NIZK Proofs in
Random Oracle Mode|

NIZK Proofs for NP in the Random Oracle Model

* Starting Point: [FLS90] NIZK Proof for NP from O\WPs in URS model.

* Goal: Replace OWPs with random oracle.
* (Trivial to replace URS with random oracle.)

58

NIZK Proofs for NP in the Random Oracle Model

* Starting Point: [FLS90] NIZK Proof for NP from O\WPs in URS model.

* Goal: Replace OWPs with random oracle.
* (Trivial to replace URS with random oracle.)

/ [FLS90] Proof Overview \
1. Build NIZK Proofs for NP in
Hidden Bits Model (HB).

Instantiate HB with URS and

K OWP. /

)

59

NIZK Proofs for NP in the Random Oracle Model

* Starting Point: [FLS90] NIZK Proof for NP from O\WPs in URS model.

* Goal: Replace OWPs with random oracle.
* (Trivial to replace URS with random oracle.)

/ [FLS90] Proof Overview \ / Our Proof Overview \
1. Build NIZK Proofs for NP in 1. Build NIZK Proofs for NP in
Hidden Bits Model (HB). Z-Tamperable Hidden Bits
Model (ZHB).
2. Instantiate HB with URS and 2. Instantiate ZHB with random

K OWP. / K oracle. /

60

NIZK Proofs in Hidden Bits Model

Uniformly random
“hidden” bits
r=r,r,.r,

1
I3

Fg

1
I's

1
Fe

Goal: Provez € L

61

NIZK Proofs in Hidden Bits Model

Uniformly random
“hidden” bits
r=r,r,.r,

r

I3

g

I's

Fe

/

Goal: Provez € L

P(z, (&=, &=, ..., &))

)

Prover can view

all the hidden bits.

o

/

Verifier can’t view

the hidden bits.

NIZK Proofs in Hidden Bits Model

Uniformly random

“hidden” bits A 0 A A A A A
=rrr r r rs ry I P r
f Goal: Provez € L \
I e
P(z, (&=, &=, ..., @) V(z)

T, {@=, &=}

P sends across proof it

~ / and openings to A

Prover can view indices of their choice.
all the hidden bits.

NIZK Proofs in Hidden Bits Model

Uniformly random

“hidden” bits A Q2 " a 0 y | I
r=r.r,..r £ I 3 My Iy le r, hcaE.ZICTW (I)Dn y
Goal: Provez € L the hidden bits
chosen by P.
P(z, (3=, 2=, ..., @=)) V(z)
T, {@=, 6=}

P sends across proof it

~ / and openings to A /

Prover can view indices of their choice.
all the hidden bits.

64

NIZK Proofs in Hidden Bits Model

Uniformly random
“hidden” bits
r=r,r,.r,

' AEEA Q 0
£ 2 3 4 s 6 . r. | Vcanviewonly
Goal: Prove z € L the hidden bits
chosen by P.
/
V(z)
T, {@=, 6=}

P(z, (&=, &=, ..., &))

)

Prover can view

all the hidden bits.

P sends across proof it
and openings to

\

~

/

indices of their choice.

+

Accept/Reject

Instantiating the HB model with URS!

URS
Y1 Y> Y3 Ya Ys V1 Yn
R & Q & 8 R
r r s r re e r,

Hidden Bits

66

Instantiating the HB model with URS!

OWPO <

O(x)) =i

r, = HCB(x;)

URS
Y1 Y2 Y3 Ya Ys Yo Yn
+
X1 X X3 X, Xg Xg X,
¢Hardcore Bit Predicate (HCB)
M) 3 g s e Mn

Hidden Bits

67

Instantiating the HB model with URS!

URS
OWPO 4
Y1 Y2 Y3 Y4 Ys Ye Yn
O(x) =y; X1 X, X3 X, Xs Xg X,
¢Hardcore Bit Predicate (HCB)
r.= HCB(x) r r r3 ry s I M
Hidden Bits
4 N N
O hard to invert: = X

_

“ Vcan'tlearnr,
from justy..

* (Unbounded) P can compute x; by brute force.

c V can check that y, = O(x.) and compute r; = HCB(x.). S

Instantiating the HB model with URS!

URS
OWPO 4
Y1 Y2 Y3 Yy Ys Y6 Yn
Lo
Ok =, X1 ¥ OWPs are bijective Xe Xn
~ ;rraTurU'r\:—D'rt”PI’EdiCate (HCB)
r.= HCB(x;) M I rs My s e Mn
Hidden Bits
a N N
O hard to invert: = X

_

“ Vcan'tlearnr,
from justy..

* (Unbounded) P can compute x; by brute force.

c V can check that y, = O(x.) and compute r; = HCB(x.). 2

Instantiating the HB model with Random Oracle and URS?

Random + URS
Oracle O Y1 Y, Y3 Ya Ys Y6 Yn
J o
O(x;) =, X, - X X4 - X X,

¢Hardcore Bit Predicate (HCB)

r, = HCB(x)) ry ? rs My ? re r

Hidden Bits

Problem: y; might not have
a preimage.
Lose completeness!

70

Instantiating the HB model with Random Oracle and URS?

Random
Oracle O +

O(x)) =i

r, = HCB(x;)

o

Problem: y; might not have
a preimage.
Lose completeness!

URS
Y1 Y2 Y3 Ya Ys Y6 Yn
X1 - X31, X32 Xq - Xe1, X62, X3 Xn
¢Hardcore Bit Predicate (HCB)
ry ? | r30rry, | rp | ? |rgOrrg OFrgs r
Hidden Bits
. . . N
Problem: y; might have multiple preimages.
P can pick whichever he wants so r; not uniformly
random. Lose soundness!
2N nJ

Instantiating the HB model with Random Oracle and URS?

Random
Oracle O +

O(x)) =i

r, = HCB(x;)

URS

Y1

Y>

Y3

Ya

Ys

_

New ldea:

Set r, =1 dependent on whether
or not y; has a preimage.

Y6

Yn

1, X62, X63

Xn

/

v

t Predicate (HCB)

r

?

31 Orrs,

Mg

?

Fgq OF I'gy OF g3

M

o

Problem: y; might not have
a preimage.
Lose completeness!

)

Hidden Bits

o

Problem: y; might have multiple preimages.

P can pick whichever he wants so r; not uniformly

random. Lose soundness!

72

~

)

Instantiating the HB model with Random Oracle and URS?

Random + URS
Oracle O Y1 Y2 Y3 Ya Ys Y6 Yn

=10 if 3%, 0(x) = y;
y 1 else

ry r, rs ry I re r,

Hidden Bits

73

Instantiating the HB model with Random Oracle and URS?

Random + URS
Oracle O Y1 Y2 Y3 Ya Ys Y6 Yn

=10 if 3%, 0(x) = y;
y 1 else

ry r, rs ry I re r,

Hidden Bits

4 N
~ Vcan'teasily

determine if y, has a

preimage or not.
k / 74

Instantiating the HB model with Random Oracle and URS?

Random + URS
Oracle O Y1 Y> Y3 Ya Ys Y6 Yn
=10 if 3%, 0(x) = y;
l
1 else
ry r, rs ry " e r,
Hidden Bits
e N . : A
~ Vcan'teasily = (preimage x;) or (“has no preimage”)
© determineify; has a * (Unbounded) P can compute x; by brute force.
preimage or not. * V can checkthaty, = O(x)).
- RN 5 S

Instantiating the HB model with Random Oracle and URS?

Random + URS
Oracle O Y1 Y2 Y3 Ya Ys Y6 Yn
- 3 .
. =10 if 3%, 0(x) = y;
y; has no preimage: i 1 else
Prover must setr; =1
- ~ ry r, rs ry " e r,
Hidden Bits
e N . :
~ Vcan'teasily = (preimage x;) or (“has no preimage”)
determine ify;has a * (Unbounded) P can compute x; by brute force.
preimage or not. * V can checkthaty, = O(x)).
- N\ 26

~

)

Instantiating the HB model with Random Oracle and URS?

-

o

-

Random + URS
Oracle O Y1 Y2 Y3 Ya Ys Yo Yn
. N : B
Problem: P can claimy, r, = {0 if 3x;, 0(x;) = y;
has no preimage even 1 else
when it does!
~ r r rs ry I e r,
Hidden Bits
N . . : p)
~ Vcan'teasily = (preimage x;) or[(has no preimage)]
determine ify; has a * (Unbounded) P can compute x; by brute force.
preimage or not. * V can checkthaty, = O(x)).
/ \ 77 /

Instantiating the HB model with Random Oracle and URS?

Random + URS
Oracle O Y1 Y2 Y3 Ya Ys Y6 Yn
I
4)
Problem: P can claimy, d Solution: \O(xi) = JVi
has no preimage even olution:
wilma i dlomel Define new model that captures this
A - [\ behavior. r
/
Hidden Bits
4 N . ;)
. Vcan't easily = (preimage x;) or[(“has no prelmage”)]
determine ify; has a * (Unbounded) P can compute x; by brute force.
preimage or not. * V can checkthaty, = O(x)).
o 2N w

NIZK Proofs in Z-Tamperable Hidden Bits Model

* Same as Hidden Bits model except that P can lie about r; if r; = 0.
 Captures ability of dishonest P to lie by saying “has no preimage” when there is

actually a preimage.
* Honest P never lies about ..

-

Original r=70
Hidden
Bits
Ty = 1

P can lie!

Ti=1

K (Similar to a Z-channel.)

Hidden Bits
Received
by V

\

/

79

NIZK Proofs in Z-Tamperable Hidden Bits Model

* Observation: P can't lie too much.
* V can run statistical tests on distribution of r to see if there are too many 1's.

80

NIZK Proofs in Z-Tamperable Hidden Bits Model

* Observation: P can't lie too much.
* V can run statistical tests on distribution of r to see if there are too many 1's.

» Key ldea: Add careful statistical tests to construction of NIZK proofs in the
(reqular) Hidden Bits model [FLSg0].

* Step 1: Carefully change parameters to make bad behavior more detectable.
* Step 2: This requires statistical tests.

* Step 3: Our analysis shows that any significant amount of cheating using the
ZHB model will be caught with high probability.

81

Warmup: Prove that G is Hamiltonian.

f . . " \ 2
Assume: Hidden bit string r

represents adjacency
matrix of cycle graph H.

[=]] (=01

QN[| W [

oo | O|th

4

oo o|lo|Oo|IN

o|lo|Oo| oo w

IOOOOOA

oo

Warmup: Prove that G is Hamiltonian.

H
4 .) .) 1[2]3]4]5]6
Assume: Hidden bit string r | [1le o Wl o [0 [0
repre_sents adjacency 310 Lagd 0 [% ’
matrix of cycle graph H. IEERNEREEEE
1 2 3 4 5 6
1 0 0 0 0
2|0 0 0 0 0
/ \ 3 0 0 0 0 0
.) 4| ofofofo 0
1. P finds permutation 1t 3 NN EEEN
such that m(C¢) = H
where C¢ is
Hamiltonian cycle of G. T TSI T
; 7 | E |
3[ofJofofo 0
4 1 1 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0

Warmup: Prove that G is Hamiltonian.

Reveal non-edges of m(G)

/ \ 1 2 3 4 S 6 :

Assume: Hidden bit string r | [1el ioi o oo N ps

represents adjacency 3% oo 0

matrix of cycle graph H. oo oo A

g 2. Show that His a
; subgraph of 1(G) by

- ~ ; opening non-edges of

1. P finds permutation 1 E . TUG)inHtoo.)

such that m(C¢) = H

where C¢ is

Hamiltonian cycle of G.
o /

QN[| RN (=

84

Warmup: Prove that G is Hamiltonian.

/ . . " \
Assume: Hidden bit string r

represents adjacency

matrix of cycle graph H.

4 N

1. P finds permutation 1t
such that m(C¢) = H
where C¢ is

1 ; gwg g g 1./. 3
2 0 0 0 0 0
3 0 0 0 0 0
. St \:X
61 00 o WEW o o hd
\
* P sends proof: (1, openings)

* V checks that all non-edges

of m(G) in H opened to o.

Hamiltonian cycle of G.
N)

QN[| RN (=

Reveal non-edges of m(G)

LSRR S

[}
o|lo|o| o

|
o
o

-

_

2. Show that His a
subgraph of 1(G) by
opening non-edges of
m(G) in Hto o.

)

85

Warmup: Prove that G is Hamiltonian.

Reveal non-edges of m(G)

4 i
Assume: Hidden bit string r
represents adjacency

n :
_| Completeness: Always exists a

permutation that works if G is

o
olo|N

b | W | N [
o] ©
(]
OOOIU)

_A

Hamiltonian. ¢ g 2. Show that His a
~ J L, subgraph of 1(G) by
- \%\ I T opening non-edges of
1. P finds permutation 1t Tt (G)inHtoo. P
such that m(C¢) = H 5
where C¢ is
Hamiltonian cycle of G. T3

- /

o
olOo|OoIN

QN[| RN (=
o|lo|o| o

86

Warmup: Prove that G is Hamiltonian.

Reveal non-edges of m(G)

/ . . . \ 1 2 3
Assume: Hidden bit string r o 10 -
represents adjacency

QN[| W N[
HO

o|lOo|o|o|O

OO O| OO
oo oo

(=] el N Nl
(@)Y Pt

/.

" @ \
= W
N[[W]|N|=
o o

o|lo|o
Oo|lo|o| O

matrix of cycle graph H. 0 . : sTo o
’ 2. Show that His a
P, subgraph of 1(G) by
- ~ F;;z\:' I opening non-edges of
1. P finds permutation 1t 3 m(G) inHtoo. y

such that m(Cg) = H
where C¢ is Soundness: V knows that every

Hamiltonian cycle of G. non-edge in G corresponds to a
N / non-edge in H => every edge in H
corresponds to an edge in G =>G
must have a Hamiltonian cycle.
N)

\

87

Warmup: Prove that G is Hamiltonian.

Reveal non-edges of m(G)

-

~

Assume: Hidden bit stringr | |1 3 E ﬂ g

represents adjacency 3% o]0

matrix of cycle graph H. sTolo ol
o .

1. P finds permutation mt

such that m(C¢) = H

wherg™ |

Ham| Alsoworksin Z-Tamperable |
N Hidden Bits model since

flipping o's to 1's only adds
edges to H! °
N : Y

’ 2. Show that His a
P, subgraph of 1(G) by
I',‘;;{' I opening non-edges of
2\\\‘//'4 m(G) in H to o.

)

\

Soundness: V knows that every
non-edge in G corresponds to a
non-edge in H => every edge in H
corresponds to an edge in G =>G

\ must have a Hamiltonian cycle. .

Warmup: Prove that G is Hamiltonian.

4 i
Assume: Hidden bit string r

H
represents adjacency g
matrix of cycle graph*"
L I A
Zero Knowledge: Pick a random
permutation T and “open” all
non-edges of ©(G) to O.

o
olo|N

(=] el N Nl

S
0
0
0

RN | -
[=] =]
(=]
OOOIU)
OO OO

=

-

1. P finds permutatiorm s
such that m(C¢) = H
where C¢ is
Hamiltonian cycle of G.

- /

QN[N [(WD =
H»—o»—n
B o|o|o|N
=1E=1k=1k=] — — ™

oo

O O K

Reveal non-edges of m(G)

LSRR S

o
o|Oo|Oo| O

=312
o
o

2. Show that H is a
subgraph of 1(G) by
opening non-edges of
m(G) in Hto o.

)

89

[FLS90] NIZK Proofs in Hidden Bits Model

* Warmup: Assume hidden bit string r is a random cycle graph.
* Works in Z-Tamperable Hidden Bits Model!

90

[FLS90] NIZK Proofs in Hidden Bits Model

* Warmup: Assume hidden bit string r is a random cycle graph.
* Works in Z-Tamperable Hidden Bits Model!

* What if ris not a cycle?
* Random nXxn graph unlikely to be a cycle.
* [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.

91

[FLS90] Sampling Cycle Graphs

/Sample nc x n< matrices MO M®

such that each element of 2 - e 0 SO

M® is 2 with probability 5 o o :

1/n2c 0 0o 0o [o JiE 0

. 0 0 0 0 0 0 0 0 0 0 0 0 0

\ / 0 0 0 0 0 0 0 0 0 0 0

: | o [NONENW o [o [WGN o [WON o | o |EOWNON o

/Case 1: Good M® A ol olol[olo o[0000

. ; . 0 0 0 0 0 0 0 0 0 0

* M0 contains a submatrix 0 0 [0 0 [0 1

. N , 0oloJoJololofloloJo|ololo]oO

SO which is the adjacency 0 0 [0 W o | o 0

0 0 0 0 0 0 0 0 0 0 0 0 0

matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

92

[FLS90] Sampling Cycle Graphs

such that each element of
M® js 1 with probability
\ 1/n2c-1_

/Sample ne x n< matrices MO)

/Case 1: Good M®

* M0 contains a submatrix
S® which is the adjacency
matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

* P uses submatrix S for
protocol and reveals all
other rows and columns to

_ be o.

)
\

M®
0 0] 0 0| 0 0 Sa)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 | 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

o |G o | o NON o [WGW o | o |WoWNGN o |
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0| o [0 | 0| o 1 0
oloJoJofloJolJolofJo]J]olo[o]oO
0 0 0 0 | 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

Reveal rows and columns not in SO,

and reveal all non-edges of m(G) in S® Reveal non-edges of 1(G)

0oJoJoJoJo[oJoJoJoJol[oJ]oJ]o
o ol ol oo 0o ol oo 0| o
o I o o o 0o ol olololo]o
0o Jololololololo[olololo]o
0o Jolololololo]lo[o]o 0| o
o lolololololo[lo[olo[o[o]o
0o JolololololoJlolololo][o]o
oM o | oo oJo]o]o 0| o
0o Jolololololo[lo[olo[lo[o]o
o lolololololo[lololo[o[o]o
ol oJolololololololo[ol o]
0o Jololololololololo[o]o]o
ol o] ool oo oHo o[o] oo
0o JololoJlolololo[oJlo[o|[o]o

93

[FLS90] Sampling Cycle Graphs

/Sample nc x n< matrices MO M®
such that each element of B S —— 0 SO
M® is 1 with probability T B o :
_ 0 0 0 0 0 | 0
\ 1/n2C 1- / 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
) 0 0 [o O o N o [o [WOWEoN o
/Case 1: Good M® A ofofotololololofolofololg
. . . 0 0 0
* M® contains a submatrix 0 0 | 0 0 | 0 o 1
. . . . 0 0 0 0 0 ._ 0 0 0 0 nn 0
SO which is the adjacency 0 0 [0 o M o | o 0
. 0 0 0 0 0 0 0 0 0 0 0 0 0
matrix of a cycle graph on
n nodes, and MM is o ‘
everywhere else. _ Reveal rows and columns not in S®,
* P uses submatrix S® for and reveal all non-edges of (G) in S® Reveal non-edges of t(G)
0 0 0 0 0 0 0 0 0 0 0 0 0
protocol and reveals all 010 lor oo i opo o0 H 010
0 0 0 0 0 0 0 0 0 0 0
other rows and columns to : -0 B T e It
0 0 0 0 0 0 0 0 0 0 - 0 0
_ be o. J 0 ol ololololololololo[o]o
0 0 0 0 0 0 0 0 0 0 0 0 0
("case 2: Bad MU N et
. 0 0 0 0 0 0 0 0 0 0 0 0 0
e All other M, 0l 0l o0ololololololo]lo]o 0
. 0 0 0 0 0 0 0 0 0 0
* P reveals all of M) to prove O T O T T I) H O O O
0 0 0 0 0 0 0 0 0 0 0 0 0

\ it was Bad. y

94

[FLS90] Sampling Cycle Graphs

[Sample n¢x n¢ matrices M
such that each element of
M® js 1 with probability

(i)\

/Case 2: Bad M)

e All other M,

* P reveals all of M) to prove
\ it was Bad.

\ 1/n2c'1. /
/Case 1: Good M® A

* M0 contains a submatrix
S® which is the adjacency
matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

* P uses submatrix S for
protocol and reveals all
other rows and columns to

_ be o.)
~

ololo|o|o
HH o
= o

o|loo|o|o
H N
cloclolll
H R

O |oo|o|o|o

0

0

0

0

o oo

[=]]
[]
o oo
[[e]

(=] [w] [e]) =] [w) [w) [e) [w) [e) [e) [e] [e] [e]]
(=] =] [w] [w] =] [w) [} [w] [w] [e] [e] [e] [e]]
(=] =] [w] [=] =] [w) [} [w] [e] [e] [e] [e] [e] [w]

(=] [=] (=] (=] (=] [=]
O =
O H
(=] [=] [w] (=] [e]) [=]

oo
[[e]
oo
(=] [
(=] [

0] 0 [0]
E
[I

N

Reveal rows and columns not in §
and reveal all non-edges of m(G) in

o

(=] (=] [e] =] [w) [w) [} [

OOOOIOO

olo(oo|o|o|o

So

undness: Holds as long as
at least one M" is Good. (P

must prove S is a subgraph

[FLS90]: Overwhelming
probability with correct
parameters.

of m(G).)

6

0

0

(=] (=] [w] (=] [w] [=]

[=] =] [w] [=] [«] (=]) [w) [w] [w) (e} [a) [)

(=] =] [w] (=] [e] [w=]

OOOOOOOOOOO.E
(]

oOlooo(o|o|o|o|o|o|o|o|O

(=] [=] (=] =] [=] [«] [e) [w) [e] [e) (o] [e] [e] [w]
(=] [=] [e] =] [=] [«) [e) [w) [e) [e) (o] [e] [e] [w]

EIOOOOOOOOOOOO

(=] =] [w] (=] =] [«) [} [w] [w) [e) [e] [e] [e]]

(=] =] [w] (=] [w]) [=]

[=][=] (=] (=] (=] (=]

OO0.000

(=[] [=] (=] [=] =) L]

/

95

=°§‘|||

[FLS90]| Sampling Cycle Graphs

-
such that each element of
M® js 1 with probability
1/n2c-1_

_

Sample n¢x n® matrices MO)

)
N

/Case 1: Good M®

* M0 contains a submatrix
S® which is the adjacency
matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

* P uses submatrix S for

protocol and reveals all

other rows and columns to

be o.

_

/Case 2: Bad M()

e All other M,

* P reveals all of M) to prove
\ it was Bad.

)
~

at least one M" is Good. (P

~yst prove S is a subgraph

FLS90]: Overwhelming

robability with correct

6 0 0 0

M®

0JoJoJoJ]oJloJoloJ]oJo]o]o]o

0 0] o0 0 0] o0 0

0 0] o0 0 0] o 0
0ololo]ololo[olo]o] ol o] o]o

0 0] o 0 0| o 0 1
0lololo[o]lo[olo[o|]o]o]oluo

0 lolo]ololololo]o]o

0 o e o mm o [Soundness: Ho
0o lololo[olo[olo]o]o

0ol o] o]olo] ol o] oo

0 0| o [0 | 0| o
olojojoloJofolo]o]oQ

0 0 0 [o IF 0 0

| |
What about in the of (G).)
| |
Z-Tamperable Hidden
| |
Bits Model?

\ y/

0] 0] 0] 0] 0] 0] 0] 0] 00 p

0 lololo[olo|lo[o]o]o N

0l o0l o]lo]o]o|lo]o]o]o

S T S B T parameters.
o o [o[o[o[o]o]o 0] 0 5] 0
0o lolololololololo|lo[o]o]o

0ol o]o]o]o|olo]o|o]olo]o

0o Jololololololololo[oIl o

0 lolololololol[o]lolo[o]o]o

ol o] ool oo oHo o[o] oo

0l ololo]olololo]o|lo]o]o]o

/

96

2
Ids as long as

=°§‘|||

[FLS90]| Sampling Cycle Graphs

-

such that each element of
M® js 1 with probability
\ 1/n2c-1_

Sample n¢x n® matrices MO)

/Case 1: Good M®

* M0 contains a submatrix
S® which is the adjacency
matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

* P uses submatrix S for
protocol and reveals all
other rows and columns to

_ be o.

)
N

/Case 2: Bad M()

e All other M,

* P reveals all of M) to prove
\ it was Bad.

)
~

-

/

o

Recall: P can add '1's.

~

97

[FLS90]| Sampling Cycle Graphs

/Sample n¢ x N matrices M(‘)\ e ™\
such that each element of
R IBERTd PTielaflell gy Recall: P can add '1's.
\ 1/n2c'1. /
/Case 1: Good M® A (N /
e M® contains a submatrix
S® which is the adjacency
matrix of a cycle graph on 4 (i)\
n nodes, and M® is o PrOblem: P can tU n M
everywhere else. C from Good to Bad by
* P uses submatrix S for \])
protocol and reveals all \ adding ‘1’s.
other rows and columns to N J
_ be o.)
/Case 2: Bad M()
* All other M),

* P reveals all of M) to prove
it was Bad.
\

[FLS90]| Sampling Cycle Graphs

/Sample n¢ x N matrices M(‘)\ e ™\
such that each element of
M®1is 1 with probability Recall: P can add ‘1's.
\ 1/n2C-1. /
/Case 1: Good M® A (N /
« M® contains a submatrix
S® which is the adjacency
matrix of a cycle graph on 4 (i)\
n nodes, and M@ is o Problem: P can turn M
everywhere else. C from Good to Bad by
* P uses submatrix S for \])
protocol and reveals all \ adding ‘1’s.
other rows and columns to N <
be o.
> Problem: P can pretend a
Case 2: Bad M Bad M@ is Good as long as
* All other M), _ ,
* P reveals all of M) to prove It contains a subgraph of
it was Bad. T[(G).
b J

[FLS90]| Sampling Cycle Graphs

/Sample nc x n< matrices MO

such that each element of
M® js 1 with probability
\ 1/n2c-1_

AN

/Case 1: Good M®

* M® contains a submatrix
S® which is the adjacency
matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

e P usessubmatrix SO for

protocol and reveals all

N it was Bad.

a I
Recall: P can add '1's
but cannot remove
L them. y
a)

Problem: P can turn M{)
from Good to Bad by
adding ‘1’s.

[\
other rows and columns to N <
be o.
> Problem: P can pretend a
Case 2: Bad MY Bad M@ is Good as long as
» All other M), : : b h of
* P reveals all of M) to prove It contains a subgraph o

=

-

G).
(G) P

P can only add '1's:
All such M have at
least n+1 '1’s.

~

[FLS90]| Sampling Cycle Graphs

-

such that each element of
M® js 1 with probability
\ 1/n2c-1_

Sample n¢x n® matrices MO)

AN

/Case 1: Good M®

* M® contains a submatrix
S® which is the adjacency
matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

e P usessubmatrix SO for
protocol and reveals all
other rows and columns to

_ be o.

/Case 2: Bad M()

e All other M,

* P reveals all of M) to prove
N it was Bad.

a I
Recall: P can add '1's
but cannot remove
9 them. y
a)

Problem: P can turn M{)
from Good to Bad by
adding ‘1’s.

[
\
N J
N
Problem: P can pretend a
Bad M{ is Good as long as
it contains a subgraph of
i(QG). P

=

-

"

P can only add '1's:
All such M have at
least n+1 '1’s.

~

)

-

‘1’s of M) must be
contained in annXn
submatrix.

~

)

[FLS90]| Sampling Cycle Graphs
p

Sample n¢x n® matrices MO)
such that each element of
M® js 1 with probability

\ 1/n2c-1_) |
(Case 1: Good MO N[Key Insight: To cheat, P must convert every Good M" to
 M® contains a submatrix Bad M(i)
S® which is the adjacency - ~
matrix of a cycle graph on : \,
n nodes, and M® is o Problem: P can turn M) ¢ P can only add '1's: A
2usypisreebs, from Good to Bad by <‘,: All such M® have at
* P uses submatrix SO for])
adding ‘1’s.

« All other M), . . ' '
omner it contains a subgraph of contained in an nXxn

* P reveals all of M) to prove) _
it was Bad. (G). y _ submatrix. D

-

[\
protocol and reveals all \ N least n+1 '1’s.)
other rows and columns to N~ /
i Problem: P tend a
robiem: F Can pretend a R i I
- i - 1's of M) must be
Case 2: Bad M Bad M® is Good as long as <,I:

[FLS90]| Sampling Cycle Graphs

-
such that each element of
M® js 1 with probability
1/n2c-1_

_

Sample n¢ x n® matrices M(‘)\
p

"

g Key Insight: If c is large, matrices become very sparse o

=> Most matrices with at least n+1'1’s, do not fit all
these '1's into an nXn submatrix!

J

/Case 1: Good M®

_

M® contains a submatrix
S® which is the adjacency
matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

P uses submatrix SO for
protocol and reveals all
other rows and columns to
be o.

AN

-

/Case 2: Bad Mt

All other M),

P reveals all of M() to prove

it was Bad.

-

" Key Insight: To cheat, P must convert every Good M® to |

Bad M®

J

-

Problem: P can turn M{)
from Good to Bad by

adding ‘1’s.
: /

R
N\
N
Problem: P can pretend a
Bad M{ is Good as long as
it contains a subgraph of
i(QG). P

(Pcan only add '1's: A
<: All such M® have at

9 least n+1'1's. y

C ‘1'sof MO mustbe)
<,I: contained in an nXn

9 submatrix. y

[FLS90]| Sampling Cycle Graphs
p

Sample n¢x n® matrices MO)
such that each element of

M@ is 1 with probability Solution: V checks for expected number of matrices with
1 n2C-1.
N / at least n+1'1's.

AN

/Case 1: Good M®
« M0 contains a submatrix
S® which is the adjacency

matrix of a cycle graph on 4 - \ 7
n nodes, and M® is o Problem: P can turn M) ¢ P can only add '1's: A
everywhere else. from Good to Bad by <: All such MO have at
* P uses submatrix S for) P
adding ‘1’s.

« All other M), . . ' '
omner it contains a subgraph of contained in an nXxn

* P reveals all of M) to prove) _
it was Bad. (G). y _ submatrix. D

-

[\
protocol and reveals all \ N least n+1 '1’s.)
other rows and columns to N~ /
. Problem: P da
robiem: I Can preten d R i I
PR i - 1's of M) must be
Case 2: Bad M Bad M® is Good as long as <,I:

[FLS90]| Sampling Cycle Graphs

-

such that each element of
M® js 1 with probability
\ 1/n2c-1_

Sample n¢x n® matrices MO)

/Case 1: Good M®

* M® contains a submatrix
S® which is the adjacency
matrix of a cycle graph on
n nodes, and MM is o
everywhere else.

e P usessubmatrix SO for
protocol and reveals all
other rows and columns to

_ be o.

{Solution: V checks for expected number of matrices With}

at least n+1 '1’s.

AN

-

Problem: P can turn Mt

from Good to Bad by
adding ‘1’s.

~

/

/Case 2: Bad M()

e All other M,

* P reveals all of M) to prove
N it was Bad.

?i

Problem: P can pretend a
Bad M{ is Good as long as
it contains a subgraph of
i(QG).

- N
Cheating P must add all
Good M" to count.

N J

-

(=

)

\

Not enough Bad A
matrices that fit in an
nXn submatrix to
make up forit.

[FLS90]| Sampling Cycle Graphs
p

Sample n¢x n® matrices MO)
such that each element of

M@ is 1 with probability {Solution: V checks for expected number of matrices With}

1/n2c2,
N\ at least n+1 '1’s.

AN

/Case 1: Good M®
« M0 contains a submatrix
S® which is the adjacency

matrix of a cycle graph on 4)
n nodes, and M® is o Problem: P can turn M(')
everywhere else. from Good to Bad by
* P uses submatrix SO for] .
adding ‘1’s.

R o el LA Bad M@ is Good as long as
* All other M(), : _
it contains a subgraph of

* P reveals all of M) to prove
T(G). \ /
J

N it was Bad.

[\

protocol and reveals all \ Soundness in Z-
other rows and columns to N / :

_ beo. D Tamperable Hidden

- Problem: P can pretend a Bits Model!

NIZK Proofs in Z-Tamperable Hidden Bits Model

* Warmup: Assume hidden bit string r is a random cycle graph.
* Works in Z-Tamperable Hidden Bits Model!

* What if ris not a cycle?
* Random nXxn graph unlikely to be a cycle.
* [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.

* Our Work: Increase sparsity of matrices and add statistical checks
to ensure that P must use at least one cycle graph.

107

Our Results

Main Theorem

If UP € RP, then with probability 1 over the choice of a random oracle 0,

P9 = NP° Nn coNP®
_ J

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the

random oracle model.
N J

NIZK Proofs in URS model from 6-Dense-PRHFs

Assuming there exists a 6-Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS
_ model.)

Future Directions

Get an unconditional random oracle separation of Pand NP N coNP.

Extend our techniques to get more separation results.

Instantiate a 6-Dense-PRHF from standard unstructured assumptions.

Build efficient-prover NIZK proofs from random oracles.

109

THANK YOU!!!

APPENDIX

/—[Set c = 4.]—\

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

/

/Case 1: Good M() A

* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.

* P uses submatrix St for
protocol and reveals all
other rows and columns to

K be 0. /
™

/Case 2: Bad M()
* All other M),
* P reveals all of Ml) to prove

N it was Bad. P

PriM is Good]

A sete=4. T

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

/

/Case 1: Good M() A

* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.

* P uses submatrix St for
protocol and reveals all
other rows and columns to

™

/Case 2: Bad M()
* All other M),
* P reveals all of M) to prove

N it was Bad. D

Pr[M is Good]

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

A sete=4. T

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

/

/Case 1: Good M() A

e M/ contains a submatrix St
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.

* P uses submatrix St for
protocol and reveals all
other rows and columns to

™

/Case 2: Bad M()
* All other M),
* P reveals all of M) to prove

N it was Bad. D

Pr[M is Good]

1. M has exactly n 1’s.

By Chebyshev’s Inequality,
Pr [#1’5 € [n —\2n,n + \/Zn” > %

Therefore,
n+vV2n 1
Pr[M hasn 1's]| > Z Pr[M hasi 1's| >
|] 2V2n . [| 42n
I=n — n

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

A sete=4. T

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

/

/Case 1: Good M() A

e M/ contains a submatrix St
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.

* P uses submatrix St for
protocol and reveals all
other rows and columns to

™

/Case 2: Bad M()
* All other M),
* P reveals all of M) to prove

N it was Bad. D

Pr[M is Good]

1. M has exactly n 1’s.

By Chebyshev’s Inequality,
Pr [#1’5 € [n —\2n,n + \/Zn” > %

Therefore,
n+v2n 1
Pr[M hasn 1's]| > Z Pr[M hasi 1's| >
|] 2V2n . [| 42n
I=n — n

2. These 1’s form a permutation submatrix.
Affected by c!

Pr[1's form a permutation]
> 1 — Pr[two 1's in same column] — Pr[two 1's in same row]

1
> 1 —o(ﬁ)

3. The permutation is an n-cycle.

Pr[M is Good]

1. M has exactly n 1’s.

A sete=4. T

Sample n¢ x n¢ matrices M{)

such that each element of M) By Chebyshev’s Inequality,
is 1 with probability 1/n2¢1, ' 1
o L ol e ility 1/ Prl#ls E[n—\/Zn,n+\/2n”25
\ /
/Case 1: Good M} A Therefore,
« M) contains a submatrix S n+van ,
which is the adjacency Pr[M hasn 1's] > Z Pr[M hasi1's] =
matrix of a cycle graph on n 2\?2n 4/2n

1= —\/2n

nodes, and M() js 0
everywhere else.) . .
e P uses submatrix S for 2. These 1’s form a permutation submatrix.
protocol and reveals all

!/ .
other rows and columns to Pr[1's form a permutation]

> 1 — Pr[two 1's in same column] — Pr[two 1's in same row]

>1-0 (—)
/Case 2: Bad M) A n?
* All other M0, 3 Th . |
* P reveals all of M) to prove . I'ne permutation is an n-cycl €.
_ itwasBad.) Pr[n — cycle | permutation] = —

n

PriM is Good] = Q(ni—S)

1. M has exactly n 1’s.

A sete=4. T

Sample n¢ x n¢ matrices M{)

such that each element of M) By Chebyshev’s Inequality,
is 1 with probability 1/n2¢1, ' 1
o L ol e ility 1/ Prl#ls E[n—\/Zn,n+\/2n”25
\ /
/Case 1: Good M} A Therefore,
« M/ contains a submatrix S n+v2n ,
which is the adjacency Pr[M hasn 1's] > Z Pr[M hasi1's] =
matrix of a cycle graph on n 2\?2n 4/2n

I=n —/2n

nodes, and M() js 0
everywhere else.) . .
« P uses submatrix S0 for 2. These 1’s form a permutation submatrix.
protocol and reveals all

!/ .
other rows and columns to Pr[1's form a permutation]

> 1 — Pr[two 1's in same column] — Pr[two 1's in same row]

>1-0 (—)
/Case 2: Bad M) A n?
* All other M0, 3 Th . |
* P reveals all of M) to prove . I'ne permutation is an n-cycl €.
_ itwasBad.) Pr[n — cycle | permutation] = —

n

Pr[P” can pretend Bad M is Good, and M has = n+1 1’s]
/—[Set c =4.]_\

Sample n¢ x n¢ matrices M{)
such that each element of M{)
is 1 with probability 1/n2c1,

o

)

/Case 1: Good M() A

* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M() js 0
everywhere else.

* P uses submatrix St for
protocol and reveals all
other rows and columns to

_ be O. -
/Case 2: Bad M) A
e All other M,
* P reveals all of M) to prove
\ it was Bad.)

Pr[P” can pretend Bad M is Good, and M has = n+1 1’s]

A sete=4. T

Sample n¢ x n¢ matrices M{)
such that each element of M{)
is 1 with probability 1/n2c1,

o

)

/Case 1: Good M() A

* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M() js 0
everywhere else.

* P uses submatrix St for
protocol and reveals all
other rows and columns to

/Case 2: Bad M)

e All other M,

* P reveals all of M) to prove
\ it was Bad.

™

Let p,=Pr[M has = n+11’s]

/Idea: Compute probability that a
matrix with n+1 1’s has

1. #1's < 2n

2. 1’s form a permutation submatrix

/

_

~

Pr[P” can pretend Bad M is Good, and M has = n+1 1’s]

A sete=4. T

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

)
/Case 1: Good M() A
* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.
* P uses submatrix St for
protocol and reveals all
other rows and columns to

™

/Case 2: Bad M()
* All other M),
* P reveals all of M) to prove

Let p, = Pr[M has = n+ 1 1’s]

/Idea: Compute probability that a
matrix with n+1 1’s has

1. #1's < 2n

2. 1’s form a permutation submatrix

\ it was Bad. y

_

~

4 N

P can’t cheat on
these because 1’s
do not fit in an
n X n submatrix!

- /

Pr[P” can pretend Bad M is Good, and M has = n+1 1’s]

A sete=4. T

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

/
/Case 1: Good M() A
* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.
* P uses submatrix St for
protocol and reveals all
other rows and columns to

™

/Case 2: Bad M()
* All other M),
* P reveals all of M) to prove

Let p, = Pr[M has = n+ 1 1’s]

/Idea: Compute probability that a
matrix with n+1 1’s has

1. #1's < 2n

By Chernoff Bound:
Pr(#1's < 2n | #1's >n] =1 —negl(n)/py

2. 1’s form a permutation submatrix

\ it was Bad. y

_

~

~

/

P can’t cheat on
these because 1’s
do not fit in an
n X n submatrix!

- /

Pr[P” can pretend Bad M is Good, and M has = n+1 1’s]

A sete=4. T

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

/
/Case 1: Good M() A
* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.
* P uses submatrix St for
protocol and reveals all
other rows and columns to

™

/Case 2: Bad M()
* All other M),
* P reveals all of M) to prove

Let p, = Pr[M has = n+ 1 1’s]

/Idea: Compute probability that a
matrix with n+1 1’s has

1. #1's < 2n
By Chernoff Bound:
Pr(#1's < 2n | #1's >n] =1 —negl(n)/py

2. 1’s form a permutation submatrix

Similar to before:

1
Pr[1's form a permutation] > 1 — O (—)

\ it was Bad. y

_

~

~

/

P can’t cheat on
these because 1’s
do not fit in an
n X n submatrix!

- /

Pr[P” can pretend Bad M is Good, and M has = n+1 1’s]

A sete=4. T

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

/

/Case 1: Good M() A

* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.

* P uses submatrix St for
protocol and reveals all
other rows and columns to

™

/Case 2: Bad M()
* All other M),
* P reveals all of M) to prove

Let p, = Pr[M has = n+ 1 1’s]

/Idea: Compute probability that a
matrix with n+1 1’s has

Similar to before:

\ it was Bad. y

_

1. #1's < 2n / \
By Chernoff Bound: P can’t cheat on
Pri#1's < 2n|#1's >n] =1 —negl(n)/px these because 1’s

2. 1’s form a permutation submatrix

1
Pr[1's form a permutation] > 1 — O (—)

< (1 —0 (niz)) + negl(n)/pn A

do not fitin an
n X n submatrix!

- /

n?2

Pr[P” can pretend Bad M is Good, and M has = n+1 1’s]

A sete=4. T

Sample n¢ x n¢ matrices M)
such that each element of M()
is 1 with probability 1/n2c1,

_

/

/Case 1: Good M() A

* M/ contains a submatrix S
which is the adjacency
matrix of a cycle graph on n
nodes, and M) js 0
everywhere else.

* P uses submatrix St for
protocol and reveals all
other rows and columns to

™

/Case 2: Bad M()
* All other M),
* P reveals all of M) to prove

\ it was Bad. y

Let p,=Pr[M has = n+11’s]

o ¥

pn- 0 (53)

/Idea: Compute probability that a
matrix with n+1 1’s has

1. #1's < 2n
By Chernoff Bound:

Pr(#1's < 2n | #1's >n] =1 —negl(n)/py

Similar to before:

_

< (1 ~-0 (niz)) + negl(n)/pn

2. 1’s form a permutation submatrix

n?2

)

Pr[1’s form a permutation] =1 — 0 (—

4 N

P can’t cheat on
these because 1’s
do not fit in an
n X n submatrix!

- /

~

