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Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• Hard Language: Fully specified decision problems not in 𝐏.

• 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃:	Languages for which there exists an efficient NP verifier for both 
membership and non-membership.

• Candidate hard languages in 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 are highly structured and few.
• Factoring
• Stochastic Games [Condon92] 
• Construction from OWPs [Brassard79, BennettGill81] 

• Only known constructions of OWPs rely on factoring or discrete log.

• Note: This is not the case for promise problems.

• Maybe: Unclear how hard 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 actually is?
• Most current candidates broken by quantum algorithms.
• P = 	𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 holds for simple computational models such as decision trees. 
• No complete languages known. 2
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Found in Jack Edmonds’ Yard
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Can we build a hard language in 
NP ∩ coNP from unstructured assumptions?
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Oracles

Unstructured Assumptions: assumptions that follow from random oracles.
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Which assumptions represent unstructured 
hardness?

Random 
Oracles

Unstructured Assumptions: assumptions that follow from random oracles.

Private Key Encryption (Unstructured) vs Public Key Encryption (Structure)
[Formalized by Impagliazzo and Rudich]
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Which assumptions represent unstructured 
hardness?

Unstructured Assumptions: assumptions that follow from random oracles.

Injective OWFs 
(Slightly 

Expanding)
OWPs Injective OWFs 

(Length Tripling)

Structured Unstructured

15

𝑂: 0,1 ! → 0,1 ! 𝑂: 0,1 ! → 0,1 !"#(%) 𝑂: 0,1 ! → 0,1 '!



Which assumptions represent unstructured 
hardness?

Random 
Oracles

OWPs

OWFs

Injective 
OWFs

Bilinear 
Maps

Factoring LWE

Collision-
Resistant Hash 

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Random oracles are one-way 
and collision-resistant.

PKE OT
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Which assumptions represent unstructured 
hardness?

Random 
Oracles

OWFs

Injective 
OWFs

Collision-
Resistant Hash 

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Length-tripling random 
oracle is injective w.h.p.

OWPs

Bilinear 
Maps

Factoring LWE

PKE OT
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OWPs

Which assumptions represent unstructured 
hardness?

Random 
Oracles

OWFs

Injective 
OWFs

Collision-
Resistant Hash 

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Injective OWFs 
imply 𝑈𝑃 ⊆ 𝑅𝑃 

Bilinear 
Maps

Factoring LWE

PKE OT

18



Which assumptions represent unstructured 
hardness?

Random 
Oracles

OWFs

Injective 
OWFs

Collision-
Resistant Hash 

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Don’t know how to build the rest 
heuristically from random oracles.

OWPs

Bilinear 
Maps

Factoring LWE

PKE OT
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Which assumptions represent unstructured 
hardness?

Random 
Oracles

OWFs

Injective 
OWFs

Collision-
Resistant Hash 

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Structured
Unstructured

OWPs

Bilinear 
Maps

Factoring LWE

PKE OT
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Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 
from Unstructured Assumptions

• No known random oracle separation of 𝐏 and 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 
• [BennettGill81] Open problem since 1981. 
• [Tardos89] details some difficulties with this approach. 

• No black-box constructions of hard languages in NP ∩ coNP from
• OWFs [BlumImpagliazzo87, Rudich88] 
• Injective OWFs and iO [BitanskyDegwekarVaikuntanathan21] 

• Implies no black-box constructions from many cryptographic primitives since                   
iO + OWFs can be used to build a lot of crypto.
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Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 
from Unstructured Assumptions

Can we build a hard language in 
𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 from random oracles?
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Random Oracle Separations of Complexity Classes
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Random Oracle Separations of Complexity Classes
• A lot of exciting work in complexity theory

• [BennettGill81] P, NP, and coNP separated by random oracles.
• [RossmanServedioTan15] Polynomial hierarchy is infinite relative to a random oracle. 
• [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random 

oracle.

• Random Oracle Hypothesis [BG81]: random oracle separations of complexity 
classes imply a non-random-oracle separation of the same classes 
• [CCGHHRR92] False for IP and PSPACE
• Plausibly true for simpler complexity classes.
• Can heuristically construct a concrete language by instantiating the random oracle with a 

cryptographic hash function.
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• A lot of exciting work in complexity theory

• [BennettGill81] P, NP, and coNP separated by random oracles.
• [RossmanServedioTan15] Polynomial hierarchy is infinite relative to a random oracle. 
• [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random 

oracle.

• Random Oracle Hypothesis [BG81]: random oracle separations of complexity 
classes imply a non-random-oracle separation of the same classes 
• [CCGHHRR92] False for IP and PSPACE
• Plausibly true for feasible complexity classes.

• Similar hypothesis in cryptography:
• Can heuristically construct a concrete language by instantiating the random oracle with a 

cryptographic hash function.
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If there exists injective OWFs, then with probability 1 over the choice of a 
random oracle 𝑂, 𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem
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If there exists injective OWFs, then with probability 1 over the choice of a 
random oracle 𝑂, 𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

Our proof is constructive!

Polytime 
Algorithm

Cryptographic 
Hash Function H

Injective OWF

Candidate language in 
(𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃)\P
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If there exists injective OWFs, then with probability 1 over the choice of a 
random oracle 𝑂, 𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

Suffices to assume 𝑈𝑃 ⊆ 𝑅𝑃 which is 
implied by injective OWFs.
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If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂, 
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem
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If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂, 
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

Main New Ingredient:
A Non-Interactive Zero Knowledge (NIZK) proof system in the random 

oracle model!
(Note: Fiat-Shamir only gives NIZK arguments.)
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If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂, 
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the 
random oracle model.

NIZK Proofs in Random Oracle Model
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If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂, 
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the 
random oracle model.

NIZK Proofs in Random Oracle Model

Can also build NIZK Proofs in URS model from a concrete 
cryptographic object we call

δ-Dense-PRHFs.
33



δ-Dense-Pseudorandom-Hash-Functions

• Functions 𝐻: 0,1 ' → 0,1 ( satisfying three properties:
1. Pseudorandom Output: 
• Let 𝑋 be uniform over {0,1}n and 𝑈( be uniform over {0,1}m.
• Then 𝐻 𝑋 ≈) 𝑈( 

2. δ-Dense: The image is δ-Dense in the codomain.
• Constant 𝛿 ∈ 0,1  which is “efficiently approximatable”.
• 𝑃𝑟 𝑈( ∈ 𝐼𝑚𝑎𝑔𝑒(𝐻) = 	𝛿 ± 𝑛𝑒𝑔𝑙(𝑛)

3. Preimage Pseudorandomness:
• Let 𝑌 be uniform over 𝐼𝑚𝑎𝑔𝑒 𝐻  and let 𝐻*+(𝑦) output a random 

preimage of 𝑦.
• Then (𝑋, 𝐻 𝑋 ) ≈) (𝐻*+(𝑌), 𝑌)
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If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂, 
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the 
random oracle model.

NIZK Proofs in Random Oracle Model

Assuming there exists a δ-Dense-PRHF, 
there exists an (unbounded-prover) NIZK proof system for NP in the URS 

model.

NIZK Proofs in URS model from δ-Dense-PRHFs
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If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂, 
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the 
random oracle model.

NIZK Proofs in Random Oracle Model

Assuming there exists a δ-Dense-PRHF, 
there exists an (unbounded-prover) NIZK proof system for NP in the URS 

model.

NIZK Proofs in URS model from δ-Dense-PRHFs

• Implied by Random Oracle
• No known instantiation from other unstructured assumptions
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NIZK Proofs for NP in URS Model [BFM88]
• Goal: Prover P is trying to prove to a verifier V that 𝑥 ∈ 𝐿. 

• Setting: 
• Unbounded prover P 
• Computationally bounded (poly-sized) verifier V 
• URS model : P and V share uniformly random string

• Properties
• Completeness: If all players are honest and 𝑥 ∈ 𝐿, the verifier accepts.
• Soundness: If 𝑥 ∉ 𝐿, no unbounded cheating prover should be able to 

convince an honest verifier to accept.
• Zero Knowledge: Security against dishonest poly-sized verifiers.
• There exists a PPT Sim such that  ∀𝑥 ∈ 𝐿,	Sim(x) ≈ (urs, P(urs, x))
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NIZK Proofs for NP in Random Oracle Model
• Goal: Prover P is trying to prove to a verifier V that 𝑥 ∈ 𝐿. 

• Setting: 
• Unbounded prover P 
• Computationally bounded (poly-sized) verifier V 
• Random Oracle model: P and V have query access to a random oracle.

• Properties
• Completeness: If all players are honest and 𝑥 ∈ 𝐿, the verifier accepts.
• Soundness: If 𝑥 ∉ 𝐿, no unbounded cheating prover should be able to 

convince an honest verifier to accept.
• Zero Knowledge: Security against dishonest verifiers that can make 

polynomially many queries to the random oracle.
• There exists a PPT Sim = (SimO, SimP) such that ∀𝑥 ∈ 𝐿, “(SimO, SimP(x)) 

≈ (O, PO(x))”
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Previous Work on NIZKs

Proofs 
(secure against unbounded 

prover)

Arguments 
(secure against PPT prover)

URS 
(uniform 

random string)

• OWPs [FLS90, BY96, CL18]
• DLIN on bilinear groups [GOS06]
• iO and OWFs [BP15]

• Random oracle [FS86]
• Many assumptions

SRS 
(structured 

random string)

• OWFs [Ps05] (unbounded prover)
• Lattices [CCH+19, PS19]
• Many assumptions

• Many assumptions
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Proofs 
(secure against unbounded 

prover)

Arguments 
(secure against PPT prover)

URS 
(uniform 

random string)

• OWPs [FLS90, BY96, CL18]
• DLIN on bilinear groups [GOS06]
• iO and OWFs [BP15]

• Random oracle [FS86]
• Many assumptions

SRS 
(structured 

random string)

• OWFs [Ps05] (unbounded prover)
• Lattices [CCH+19, PS19]
• Many assumptions

• Many assumptions

Previous Work on NIZKs

Structured Hardness
(and not post-quantum, 

except maybe iO)
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Previous Work on NIZKs

Proofs 
(secure against unbounded 

prover)

Arguments 
(secure against PPT prover)

URS 
(uniform 

random string)

• OWPs [FLS90, BY96, CL18]
• DLIN on bilinear groups [GOS06]
• iO and OWFs [BP15]
• Random oracle or δ-Dense-PRHF 
     [Our Work]

• Random oracle [FS86]
• Many assumptions

SRS 
(structured 

random string)

• OWFs [Ps05] (unbounded prover)
• Lattices [CCH+19, PS19]
• Many assumptions

• Many assumptions

Unstructured 
Hardness
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If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂, 
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the 
random oracle model.

NIZK Proofs in Random Oracle Model

Assuming there exists a δ-Dense-PRHF, 
there exists an (unbounded-prover) NIZK proof system for NP in the URS 

model.

NIZK Proofs in URS model from δ-Dense-PRHFs
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Separating
	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!



SeparaKng	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!
• Ingredients
• Injective OWF: f
• NIZK Proof (𝑃(.), 𝑉(.), 𝑆𝑖𝑚)	in Random Oracle model for the language
• 𝐿/ = 𝑦: ∃𝑥, 𝑓 𝑥 = 𝑦  : “𝑦 has a preimage”
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SeparaKng	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!
• Ingredients
• Injective OWF: f
• NIZK Proof (𝑃(.), 𝑉(.), 𝑆𝑖𝑚)	in Random Oracle model for the language
• 𝐿/ = 𝑦: ∃𝑥, 𝑓 𝑥 = 𝑦  : “𝑦 has a preimage”

• 𝐿 = { 𝑦, 𝑖 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 } Promise : 𝑦 always has a preimage
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SeparaKng	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!
• Ingredients
• Injective OWF: f
• NIZK Proof (𝑃(.), 𝑉(.), 𝑆𝑖𝑚)	in Random Oracle model for the language
• 𝐿/ = 𝑦: ∃𝑥, 𝑓 𝑥 = 𝑦  : “𝑦 has a preimage”

• 𝐿 = { 𝑦, 𝑖 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 } Promise : 𝑦 always has a preimage

• Our Language (with random oracle O)
• 𝐿1 = { 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 ∧ 𝑉1 𝑦, 𝜋 = 1}

   “y has a preimage x where xi = 1” and 
   “𝜋 is a valid proof that y has a preimage”
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SeparaKng	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!
• Ingredients
• Injective OWF: f
• NIZK Proof (𝑃(.), 𝑉(.), 𝑆𝑖𝑚)	in Random Oracle model for the language
• 𝐿/ = 𝑦: ∃𝑥, 𝑓 𝑥 = 𝑦  : “𝑦 has a preimage”

• 𝐿 = { 𝑦, 𝑖 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 } Promise : 𝑦 always has a preimage

• Our Language (with random oracle O)
• 𝐿1 = { 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 ∧ 𝑉1 𝑦, 𝜋 = 1}

   “y has a preimage x where xi = 1” and 
   “𝜋 is a valid proof that y has a preimage”

Similar proof also works assuming a language 
𝐿′′ ∈ 𝑈𝑃\RP 
in which case 

𝐿/ = 𝑦: ∃𝑤, 𝑦, 𝑤 ∈ 	𝑅2//
𝐿1 = { 𝑦, 𝑖, 𝜋 : ∃𝑤, 𝑦, 𝑤 ∈ 	𝑅2// ∧ 𝑤0 = 1 ∧ 𝑉1 𝑦, 𝜋 = 1}
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𝐿! = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥" = 1 ∧ 𝑉! 𝑦, 𝜋 = 1

𝐿! ∈ 𝑁𝑃!
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𝐿! = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥" = 1 ∧ 𝑉! 𝑦, 𝜋 = 1

𝐿! ∈ 𝑁𝑃!

𝐷%&' (𝑦, 𝑖, 𝜋), 𝑤
1. Check if 𝑉' 𝑦, 𝜋  verifies. If not, then 𝑦, 𝑖, 𝜋 ∉ 𝐿' . Reject.
2. Check that for witness w, 𝑓 𝑤 = 𝑦. If not, reject.
3. Accept if 𝑤( = 1. 
   

The correctness of 𝐷!"# (𝑦, 𝑖, 𝜋), 𝑤  follows from definition of 𝐿#. 
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!𝐿6 = 𝑦, 𝑖, 𝜋 : ∄	𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∨ (𝑉6 𝑦, 𝜋 = 0)

If NIZK perfectly sound*, 𝑃𝑟![𝐿! ∈ 𝑐𝑜𝑁𝑃!]=1
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𝐷)*%&' (𝑦, 𝑖, 𝜋), 𝑤
1. Check if 𝑉' 𝑦, 𝜋  verifies. If not, then 𝑦, 𝑖, 𝜋 ∈ 0𝐿' . Accept.

• Otherwise, soundness of NIZK proof ensures ∃𝑥, 𝑓 𝑥 = 𝑦.
• This x is unique since f is injective!
• Expect witness w to be this unique x.

2. Check that for witness w, 𝑓 𝑤 = 𝑦. If not, reject.
3. Accept if 𝑤( = 0. 
   

!𝐿6 = 𝑦, 𝑖, 𝜋 : ∄	𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∨ (𝑉6 𝑦, 𝜋 = 0)

If NIZK perfectly sound*, 𝑃𝑟![𝐿! ∈ 𝑐𝑜𝑁𝑃!]=1
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𝐿6 = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∧ 𝑉6 𝑦, 𝜋 = 1

If NIZK  is ZK, 𝑃𝑟! 𝐿! ∉ 𝑃! = 1
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𝐿6 = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∧ 𝑉6 𝑦, 𝜋 = 1

Assume 𝑃𝑟1 𝐿1 ∈ 𝑃1 > 0.

Theorem from [BG81] implies there exists a polytime Turing Machine 𝐷(3) which decides  
𝐿(3) with probability 1 over the choice of 𝑂.

If NIZK  is ZK, 𝑃𝑟! 𝐿! ∉ 𝑃! = 1
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𝐿6 = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∧ 𝑉6 𝑦, 𝜋 = 1

Assume 𝑃𝑟1 𝐿1 ∈ 𝑃1 > 0.

Theorem from [BG81] implies there exists a polytime Turing Machine 𝐷(3) which decides  
𝐿(3) with probability 1 over the choice of 𝑂.

Then, w.h.p we could invert OWF f!
f-Inverter 𝑦 :
1. For each i:

a. Use NIZK simulator to simulate a proof 𝜋 that 𝑦 has a preimage.
b. Set xi =  𝐷$%&# 𝑦, 𝑖, 𝜋   (using NIZK simulator to simulate random oracle queries).

I. If 𝜋 was a real proof, then D would output correct xi.
II. Zero knowledge ensures that D acts similarly on simulated proof!

2. Output x.  

If NIZK  is ZK, 𝑃𝑟! 𝐿! ∉ 𝑃! = 1
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Constructing NIZK Proofs in 
Random Oracle Model



NIZK Proofs for NP in the Random Oracle Model
• Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model. 

• Goal: Replace OWPs with random oracle.
• (Trivial to replace URS with random oracle.)
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NIZK Proofs for NP in the Random Oracle Model
• Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model. 

• Goal: Replace OWPs with random oracle.
• (Trivial to replace URS with random oracle.)

[FLS90] Proof Overview
1. Build NIZK Proofs for NP in 

Hidden Bits Model (HB).

2. Instantiate HB with URS and 
OWP.

59



NIZK Proofs for NP in the Random Oracle Model
• Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model. 

• Goal: Replace OWPs with random oracle.
• (Trivial to replace URS with random oracle.)

[FLS90] Proof Overview
1. Build NIZK Proofs for NP in 

Hidden Bits Model (HB).

2. Instantiate HB with URS and 
OWP.

Our Proof Overview
1. Build NIZK Proofs for NP in     

Z-Tamperable Hidden Bits 
Model (ZHB).

2. Instantiate ZHB with random 
oracle.
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NIZK Proofs in Hidden Bits Model

r1 r2 r3 r4 r5 r6 … rn

Uniformly random 
“hidden” bits 

r = r1r2…rn.
Goal: Prove z ∈ 𝐿
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NIZK Proofs in Hidden Bits Model

r1 r2 r3 r4 r5 r6 … rn

Uniformly random 
“hidden” bits 

r = r1r2…rn.

1 2 n

Goal: Prove z ∈ 𝐿

P(z, (      ,       , … ,      )) V(z) 

Prover can view 
all the hidden bits.

Verifier can’t view 
the hidden bits.
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NIZK Proofs in Hidden Bits Model

r1 r2 r3 r4 r5 r6 … rn

Uniformly random 
“hidden” bits 

r = r1r2…rn.

1 2 n

Goal: Prove z ∈ 𝐿

P(z, (      ,       , … ,      )) V(z) 

Prover can view 
all the hidden bits.

π, {     ,     } 2 5

P sends across proof π 
and openings to 

indices of their choice.
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r1 r2 r3 r4 r5 r6 … rn

Uniformly random 
“hidden” bits 

r = r1r2…rn.

1 2 n

Goal: Prove z ∈ 𝐿

P(z, (      ,       , … ,      )) V(z) 

Prover can view 
all the hidden bits.

π, {     ,     } 2 5

P sends across proof π 
and openings to 

indices of their choice.

V can view only 
the hidden bits 

chosen by P.
2

5

NIZK Proofs in Hidden Bits Model
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r1 r2 r3 r4 r5 r6 … rn

Uniformly random 
“hidden” bits 

r = r1r2…rn.

1 2 n

Goal: Prove z ∈ 𝐿

P(z, (      ,       , … ,      )) V(z) 

Prover can view 
all the hidden bits.

π, {     ,     } 2 5

P sends across proof π 
and openings to 

indices of their choice.

V can view only 
the hidden bits 

chosen by P.
2

5

Accept/Reject

NIZK Proofs in Hidden Bits Model
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y1 y2 y3 y4 y5 y6 … yn

URS

Hidden Bits

?

Instantiating the HB model with URS!

r1 r2 r3 r4 r5 r6 … rn
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y1 y2 y3 y4 y5 y6 … yn

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

x1 x2 x3 x4 x5 x6 … xn

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

ri = HCB(xi)

Instantiating the HB model with URS!

OWP O
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y1 y2 y3 y4 y5 y6 … yn
OWP O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

x1 x2 x3 x4 x5 x6 … xn

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

ri = HCB(xi)

O hard to invert: 
V can’t learn ri 
from just yi. 

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi) and compute ri = HCB(xi).

= xi

Instantiating the HB model with URS!
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y1 y2 y3 y4 y5 y6 … yn
OWP O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

x1 x2 x3 x4 x5 x6 … xn

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

ri = HCB(xi)

O hard to invert: 
V can’t learn ri 
from just yi. 

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi) and compute ri = HCB(xi).

= xi

Instantiating the HB model with URS!

OWPs are bijective
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Instantiating the HB model with Random Oracle and URS?

y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

r1 ? r3 r4 ? r6 … rn

Hidden Bits

x1 - x3 x4 - x6 … xn

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

ri = HCB(xi)

Problem: yi might not have 
a preimage.

Lose completeness!
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y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

Hidden Bits

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

Problem: yi might not have 
a preimage.

Lose completeness!

Problem: yi might have multiple preimages. 
P can pick whichever he wants so ri not uniformly 

random. Lose soundness!

x1 - x31, x32 x4 - x61, x62, x63 … xn

r1 ? r31 or r32 r4 ? r61 or r62 or r63 … rnri = HCB(xi)

Instantiating the HB model with Random Oracle and URS?
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y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

Hidden Bits

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

Problem: yi might not have 
a preimage.

Lose completeness!

Problem: yi might have multiple preimages. 
P can pick whichever he wants so ri not uniformly 

random. Lose soundness!

x1 - x31, x32 x4 - x61, x62, x63 … xn

r1 ? r31 or r32 r4 ? r61 or r62 or r63 … rnri = HCB(xi)

New Idea: 
Set ri = 1 dependent on whether 

or not yi has a preimage.

Instantiating the HB model with Random Oracle and URS?
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y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

Instantiating the HB model with Random Oracle and URS?
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y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily 
determine if yi has a 
preimage or not.

Instantiating the HB model with Random Oracle and URS?

74



y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily 
determine if yi has a 
preimage or not.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi).

= (preimage xi) or (“has no preimage”)

Instantiating the HB model with Random Oracle and URS?
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y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily 
determine if yi has a 
preimage or not.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi).

= (preimage xi) or (“has no preimage”)

yi has no preimage: 
Prover must set ri =1

Instantiating the HB model with Random Oracle and URS?
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y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily 
determine if yi has a 
preimage or not.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi).

= (preimage xi) or (“has no preimage”)

Problem: P can claim yi 
has no preimage even 

when it does!

Instantiating the HB model with Random Oracle and URS?
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y1 y2 y3 y4 y5 y6 … yn

Random 
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily 
determine if yi has a 
preimage or not.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi).

= (preimage xi) or (“has no preimage”)

Problem: P can claim yi 
has no preimage even 

when it does!

Solution: 
Define new model that captures this 

behavior.

Instantiating the HB model with Random Oracle and URS?
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• Same as Hidden Bits model except that P can lie about ri if ri = 0.
• Captures ability of dishonest P to lie by saying “has no preimage” when there is 

actually a preimage.
• Honest P never lies about ri.

NIZK Proofs in Z-Tamperable Hidden Bits Model

b𝑟0 = 0Original 
Hidden 

Bits

Hidden Bits 
Received 

by V

b𝑟0 = 1

𝑟0 = 0

𝑟0 = 1

(Similar to a Z-channel.)

P can lie!
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• Observation: P can’t lie too much.
• V can run statistical tests on distribution of r to see if there are too many 1’s.

NIZK Proofs in Z-Tamperable Hidden Bits Model
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• Observation: P can’t lie too much.
• V can run statistical tests on distribution of r to see if there are too many 1’s.

• Key Idea: Add careful statistical tests to construction of NIZK proofs in the 
(regular) Hidden Bits model [FLS90].

• Step 1: Carefully change parameters to make bad behavior more detectable.
• Step 2: This requires statistical tests.
• Step 3: Our analysis shows that any significant amount of cheating using the 

ZHB model will be caught with high probability.

NIZK Proofs in Z-Tamperable Hidden Bits Model
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Assume: Hidden bit string r 
represents adjacency 
matrix of cycle graph H.

Warmup: Prove that G is Hamiltonian.
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1. P finds permutation π 
such that π(CG) = H 
where CG is 
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r 
represents adjacency 
matrix of cycle graph H.
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1. P finds permutation π 
such that π(CG) = H 
where CG is 
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r 
represents adjacency 
matrix of cycle graph H.

2. Show that H is a 
subgraph of π(G) by 
opening non-edges of 
π(G) in H to 0.
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1. P finds permutation π 
such that π(CG) = H 
where CG is 
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r 
represents adjacency 
matrix of cycle graph H.

2. Show that H is a 
subgraph of π(G) by 
opening non-edges of 
π(G) in H to 0.

• P sends proof: (π, openings)
• V checks that all non-edges 

of π(G) in H opened to 0.
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1. P finds permutation π 
such that π(CG) = H 
where CG is 
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r 
represents adjacency 
matrix of cycle graph H.

2. Show that H is a 
subgraph of π(G) by 
opening non-edges of 
π(G) in H to 0.

Completeness: Always exists a 
permutation that works if G is 

Hamiltonian.
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1. P finds permutation π 
such that π(CG) = H 
where CG is 
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r 
represents adjacency 
matrix of cycle graph H.

2. Show that H is a 
subgraph of π(G) by 
opening non-edges of 
π(G) in H to 0.

Soundness: V knows that every 
non-edge in G corresponds to a 

non-edge in H => every edge in H 
corresponds to an edge in G => G 
must have a Hamiltonian cycle.
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1. P finds permutation π 
such that π(CG) = H 
where CG is 
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r 
represents adjacency 
matrix of cycle graph H.

2. Show that H is a 
subgraph of π(G) by 
opening non-edges of 
π(G) in H to 0.

Soundness: V knows that every 
non-edge in G corresponds to a 

non-edge in H => every edge in H 
corresponds to an edge in G => G 
must have a Hamiltonian cycle.

Also works in Z-Tamperable 
Hidden Bits model since 

flipping 0’s to 1’s only adds 
edges to H!
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1. P finds permutation π 
such that π(CG) = H 
where CG is 
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r 
represents adjacency 
matrix of cycle graph H.

2. Show that H is a 
subgraph of π(G) by 
opening non-edges of 
π(G) in H to 0.

Zero Knowledge: Pick a random 
permutation π and “open” all 

non-edges of π(G) to 0.
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• Warmup: Assume hidden bit string r is a random cycle graph.
• Works in Z-Tamperable Hidden Bits Model!

[FLS90] NIZK Proofs in Hidden Bits Model
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• Warmup: Assume hidden bit string r is a random cycle graph.
• Works in Z-Tamperable Hidden Bits Model!

• What if r is not a cycle?
• Random 𝑛×𝑛 graph unlikely to be a cycle.
• [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.

[FLS90] NIZK Proofs in Hidden Bits Model
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Soundness: Holds as long as 
at least one M(i) is Good. (P 

must prove S(i) is a subgraph 
of π(G).)

 
[FLS90]: Overwhelming 
probability with correct 

parameters.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.
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Soundness: Holds as long as 
at least one M(i) is Good. (P 

must prove S(i) is a subgraph 
of π(G).)

 
[FLS90]: Overwhelming 
probability with correct 

parameters.

What about in the 
Z-Tamperable Hidden 

Bits Model?



[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Recall: P can add ‘1’s.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Recall: P can add ‘1’s.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Recall: P can add ‘1’s.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.

Problem: P can pretend  a 
Bad M(i) is Good as long as 
it contains a subgraph of 

π(G).
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Recall: P can add ‘1’s 
but cannot remove 

them.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.

Problem: P can pretend  a 
Bad M(i) is Good as long as 
it contains a subgraph of 

π(G).

P can only add ‘1’s: 
All such M(i) have at 

least n+1 ‘1’s.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Recall: P can add ‘1’s 
but cannot remove 

them.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.

Problem: P can pretend  a 
Bad M(i) is Good as long as 
it contains a subgraph of 

π(G).

P can only add ‘1’s: 
All such M(i) have at 

least n+1 ‘1’s.

‘1’s of M(i) must be 
contained in an 𝑛×𝑛 

submatrix.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.

Problem: P can pretend  a 
Bad M(i) is Good as long as 
it contains a subgraph of 

π(G).

P can only add ‘1’s: 
All such M(i) have at 

least n+1 ‘1’s.

‘1’s of M(i) must be 
contained in an 𝑛×𝑛 

submatrix.

Key Insight: To cheat, P must convert every Good M(i) to 
Bad M(i) 
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.

Problem: P can pretend  a 
Bad M(i) is Good as long as 
it contains a subgraph of 

π(G).

P can only add ‘1’s: 
All such M(i) have at 

least n+1 ‘1’s.

‘1’s of M(i) must be 
contained in an 𝑛×𝑛 

submatrix.

Key Insight: If c is large, matrices become very sparse 
=> Most matrices with at least n+1 ‘1’s, do not fit all 

these ‘1’s into an 𝑛×𝑛 submatrix!

Key Insight: To cheat, P must convert every Good M(i) to 
Bad M(i) 
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.

Problem: P can pretend  a 
Bad M(i) is Good as long as 
it contains a subgraph of 

π(G).

P can only add ‘1’s: 
All such M(i) have at 

least n+1 ‘1’s.

‘1’s of M(i) must be 
contained in an 𝑛×𝑛 

submatrix.

Solution: V checks for expected number of matrices with 
at least n+1 ‘1’s.
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[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.

Problem: P can pretend  a 
Bad M(i) is Good as long as 
it contains a subgraph of 

π(G).

Solution: V checks for expected number of matrices with 
at least n+1 ‘1’s.

Cheating P must add all 
Good M(i) to count.

Not enough Bad 
matrices that fit in an 
𝑛×𝑛 submatrix to 

make up for it.105



[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i) 
such that each element of 

M(i) is 1 with probability 
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix 
S(i) which is the adjacency 
matrix of a cycle graph on 
n nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Problem: P can turn M(i) 
from Good to Bad by 

adding ‘1’s.

Problem: P can pretend  a 
Bad M(i) is Good as long as 
it contains a subgraph of 

π(G).

Solution: V checks for expected number of matrices with 
at least n+1 ‘1’s.

Soundness in Z-
Tamperable Hidden 

Bits Model!
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• Warmup: Assume hidden bit string r is a random cycle graph.
• Works in Z-Tamperable Hidden Bits Model!

• What if r is not a cycle?
• Random 𝑛×𝑛 graph unlikely to be a cycle.
• [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.
• Our Work: Increase sparsity of matrices and add statistical checks 

to ensure that P must use at least one cycle graph.

NIZK Proofs in Z-Tamperable Hidden Bits Model
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If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂, 
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the 
random oracle model.

NIZK Proofs in Random Oracle Model

Assuming there exists a δ-Dense-PRHF, 
there exists an (unbounded-prover) NIZK proof system for NP in the URS 

model.

NIZK Proofs in URS model from δ-Dense-PRHFs
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Future Directions

1. Get an unconditional random oracle separation of 𝑃 and 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃.

2. Extend our techniques to get more separation results.

3. Instantiate a δ-Dense-PRHF from standard unstructured assumptions.

4. Build efficient-prover NIZK proofs from random oracles.
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THANK YOU!!!



APPENDIX



Pr[M is Good]
Sample nc x nc matrices M(i) 

such that each element of M(i) 
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i) 
which is the adjacency 
matrix of a cycle graph on n 
nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Set c = 4.



Pr[M is Good]
Sample nc x nc matrices M(i) 

such that each element of M(i) 
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i) 
which is the adjacency 
matrix of a cycle graph on n 
nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

Set c = 4.



Pr[M is Good]
Sample nc x nc matrices M(i) 

such that each element of M(i) 
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i) 
which is the adjacency 
matrix of a cycle graph on n 
nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

By	Chebyshev’s	Inequality,
Pr #1(𝑠	 ∈ 𝑛 − 2𝑛, 𝑛 + 2𝑛 ≥ %

)
 

Therefore,

Pr 𝑀	ℎ𝑎𝑠	𝑛	1(𝑠 ≥
1

2 2𝑛
V

*+!	- )!

!" )!

Pr[𝑀	ℎ𝑎𝑠	𝑖	1(𝑠] ≥
1

4 2𝑛

Set c = 4.



Pr[M is Good]
Sample nc x nc matrices M(i) 

such that each element of M(i) 
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i) 
which is the adjacency 
matrix of a cycle graph on n 
nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

By	Chebyshev’s	Inequality,
Pr #1(𝑠	 ∈ 𝑛 − 2𝑛, 𝑛 + 2𝑛 ≥ %

)
 

Therefore,

Pr 𝑀	ℎ𝑎𝑠	𝑛	1(𝑠 ≥
1

2 2𝑛
V

*+!	- )!

!" )!

Pr[𝑀	ℎ𝑎𝑠	𝑖	1(𝑠] ≥
1

4 2𝑛

Pr 1(𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
≥ 1 − 	Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑐𝑜𝑙𝑢𝑚𝑛 − Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑟𝑜𝑤

≥ 1	 − 𝑂
1
𝑛)

Affected by c!

Set c = 4.



Pr[M is Good]
Sample nc x nc matrices M(i) 

such that each element of M(i) 
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i) 
which is the adjacency 
matrix of a cycle graph on n 
nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

By	Chebyshev’s	Inequality,
Pr #1(𝑠	 ∈ 𝑛 − 2𝑛, 𝑛 + 2𝑛 ≥ %

)
 

Therefore,

Pr 𝑀	ℎ𝑎𝑠	𝑛	1(𝑠 ≥
1

2 2𝑛
V

*+!	- )!

!" )!

Pr[𝑀	ℎ𝑎𝑠	𝑖	1(𝑠] ≥
1

4 2𝑛

Pr 	𝑛 − 𝑐𝑦𝑐𝑙𝑒	 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛] =
1
𝑛

Pr 1(𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
≥ 1 − 	Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑐𝑜𝑙𝑢𝑚𝑛 − Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑟𝑜𝑤

≥ 1	 − 𝑂
1
𝑛)

Set c = 4.



Pr[M is Good]
Sample nc x nc matrices M(i) 

such that each element of M(i) 
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i) 
which is the adjacency 
matrix of a cycle graph on n 
nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

By	Chebyshev’s	Inequality,
Pr #1(𝑠	 ∈ 𝑛 − 2𝑛, 𝑛 + 2𝑛 ≥ %

)
 

Therefore,

Pr 𝑀	ℎ𝑎𝑠	𝑛	1(𝑠 ≥
1

2 2𝑛
V

*+!	- )!

!" )!

Pr[𝑀	ℎ𝑎𝑠	𝑖	1(𝑠] ≥
1

4 2𝑛

Pr 	𝑛 − 𝑐𝑦𝑐𝑙𝑒	 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛] =
1
𝑛

Pr 1(𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
≥ 1 − 	Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑐𝑜𝑙𝑢𝑚𝑛 − Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑟𝑜𝑤

≥ 1	 − 𝑂
1
𝑛)

= Ω 9
:4.6

Set c = 4.



Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s] 

Sample nc x nc matrices M(i) 
such that each element of M(i) 

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i) 
which is the adjacency 
matrix of a cycle graph on n 
nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Set c = 4.



Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s] 

Sample nc x nc matrices M(i) 
such that each element of M(i) 

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i) 
which is the adjacency 
matrix of a cycle graph on n 
nodes, and M(i) is 0 
everywhere else.

• P uses submatrix S(i) for 
protocol and reveals all 
other rows and columns to 
be 0.

Let pn = Pr[M has ≥ n+ 1 1’s] 

Idea: Compute probability that a 
matrix with n+1 1’s has

1. #1’s ≤ 2n

2. 1’s form a permutation submatrix

Set c = 4.



Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s] 

Sample nc x nc matrices M(i) 
such that each element of M(i) 

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove 

it was Bad.

Case 1: Good M(i)
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