Hard Languages in $\bf NP \cap \bf coNP$ and NIZK Proofs from Unstructured Hardness

Riddhi Ghosal, Yuval Ishai, Alexis Korb, Eyal Kushilevitz, Paul Lou, Amit Sahai

• Hard Language: Fully specified decision problems not in P.

- Hard Language: Fully specified decision problems not in P .
- NP \cap coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.

- Hard Language: Fully specified decision problems not in P .
- **NP** \cap **coNP**: Languages for which there exists an efficient **NP** verifier for both membership and non-membership.
- Candidate hard languages in $\bf NP \cap \bf coNP$ are highly structured and few.
	- Languages related to factoring and discrete log.
	- Stochastic Games [Condon92]
	- Construction from OWPs [Brassard79, BennettGill81]
		- Only known constructions of OWPs rely on factoring or discrete log

- Hard Language: Fully specified decision problems not in P .
- **NP** \cap **coNP**: Languages for which there exists an efficient **NP** verifier for both membership and non-membership.
- Candidate hard languages in $\bf NP \cap \bf coNP$ are highly structured and few.
	- Languages related to factoring and discrete log.
	- Stochastic Games [Condon92]
	- Construction from OWPs [Brassard79, BennettGill81]
		- Only known constructions of OWPs rely on factoring or discrete log
- Note: This is not the case for promise problems.

- \bullet Hard Language: Fully specified decision problems not in P .
- NP \cap coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.
- Candidate hard languages in $NP \cap coNP$ are highly structured and few.
	- Languages related to factoring and discrete log.
	- Stochastic Games [Condon92]
	- Construction from OWPs [Brassard79, BennettGill81]
		- Only known constructions of OWPs rely on factoring or discrete log.
- Note: This is not the case for promise problems.
- Maybe: Unclear how hard $\bf NP \cap \bf coNP$ actually is?
	- Most current candidates broken by quantum algorithms.
	- $P = NP \cap coNP$ holds for simple computational models such as decision trees.
	- No complete languages known.

- \bullet Hard Language: Fully specified decision problems not in P .
- NP n coNP: Languages for which there compute membership and non-membership.
- - Languages related to factoring and discrete
	- Stochastic Games [Condon92]
	- - Only known constructions of OWPs rel
- Note: This is not the case for promise pr
- Maybe: Unclear how hard $\bf NP \cap \bf coNP$ a
	- Most current candidates broken by quantui
	- $P = NP \cap coNP$ holds for simple computational
	- No complete languages known.

• Candidate hard languages in NP n coN
• Languages related to factoring and discrete of the computed in polyllog n • Construction from OWPs [Brassard79, Ben]
• Only known constructions of OWPs rel Perhaps $\overline{S} \in \mathcal{F} \Rightarrow \mu$ orthogonal to \overline{S}
ote: This is not the case for promise proponent point believe so since I
laybe: Unclear Peter Sarnak's Lecture

- \bullet Hard Language: Fully specified decision problems not in P .
- NP \cap coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.
- Candidate hard languages in NP \cap coNP are highly structured and few.
	- Languages related to factoring and discrete log.
	- Stochastic Games [Condon92]
	- Construction from OWPs [Brassard79, BennettGill81]
		- Only known constructions of OWPs rely on factoring or discrete log.
- Note: This is not the case for promise problems.
- Maybe: Unclear how hard NP \cap coNP actually is?
	- Most current candidates broken by quantum algorithms.
	- $P = NP \cap coNP$ holds for simple computational models such as decision trees.
	- No complete languages known.

- Hard Language: Fully specified decision problems not in P.
- NP \cap coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.
- Candidate hard languages in NP \cap coNP are highly structured and few.

• Languages related to factoring and discrete log. **External Can we build a hard language in**

 $\mathbf{F}^{\mathbf{B}}$ NP ∩ coNP from unstructured assumptions?

- Note: This is not the case for promise problems.
- Maybe: Unclear how hard NP \cap coNP actually is?
	- Most current candidates broken by quantum algorithms.
	- $P = NP \cap coNP$ holds for simple computational models such as decision trees.
	- No complete languages known.

Private Key Encryption (Unstructured) vs Public Key Encryption (Structure) [Formalized by Impagliazzo and Rudich]

Hardness of $\bf NP \cap \bf coNP$ from Unstructured Assumptions

- No known random oracle separation of **P** and **NP** \cap **coNP**
	- [BennettGill81] Open problem since 1981.
	- [Tardos89] details some difficulties with this approach.

Hardness of $\bf NP \cap \bf coNP$ from Unstructured Assumptions

- No known random oracle separation of **P** and **NP** \cap **coNP**
	- [BennettGill81] Open problem since 1981.
	- [Tardos89] details some difficulties with this approach.
- No black-box constructions of hard languages in $NP \cap coNP$ from
	- OWFs [BlumImpagliazzo87, Rudich88, KahnSaksSmythoo]
	- Injective OWFs and Indistinguishability Obfuscation (iO) [BitanskyDegwekarVaikuntanathan21]
		- Implies no black-box constructions from many cryptographic primitives since iO + OWFs can be used to build a lot of crypto.

Hardness of $\bf NP \cap coNP$ from Unstructured Assumptions

- No known random oracle separation of **P** and **NP** \cap **coNP**
	- [BennettGill81] Open problem since 1981.
	- [Tardos89] details some difficulties with this approach.
- No black-box constructions of hard languages in $NP \cap coNP$ from
	- OWFs [BlumImpagliazzo87, Rudich88, KahnSaksSmythoo]
	- Injective OWFs and Indistinguishability Obfuscation (iO) [BitanskyDegwekarVaikuntanathan21]
		- Implies no black-box constructions from many cryptographic primitives since iO + OWFs can be used to build a lot of crypto.

Can we build a hard language in

 $\bf NP \cap \bf coNP$ from random oracles?

Random Oracle Separations of Complexity Classes

Random Oracle Separations of Complexity Classes

- A lot of exciting work in complexity theory
	- [BennettGill81] P, NP, and coNP separated by random oracles.
	- [RossmanServedioTan15] Polynomial hierarchy is infinite relative to a random oracle.
	- [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random oracle.

Random Oracle Separations of Complexity Classes

- A lot of exciting work in complexity theory
	- [BennettGill81] P, NP, and coNP separated by random oracles.
	- [RossmanServedioTan15] Polynomial hierarchy is infinite relative to a random oracle.
	- [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random oracle.
- Random Oracle Hypothesis [BG81]: random oracle separations of complexity classes imply a non-random-oracle separation of the same classes
	- [CCGHHRR92] False for IP and PSPACE
	- Plausibly true for feasible complexity classes.
- Similar hypothesis in cryptography:
	- Can heuristically construct a *concrete* language by instantiating the random oracle with a cryptographic hash function.

Main Theorem

If there exists injective OWFs, then with probability 1 over the choice of a random oracle $O, P^O \neq NP^O \cap coNP^O$

Main Theorem

If there exists injective OWFs, then with probability 1 over the choice of a random oracle $O, P^O \neq NP^O \cap coNP^O$

Our proof is constructive!

Main Theorem

If there exists injective OWFs, then with probability 1 over the choice of a random oracle $O, P^O \neq NP^O \cap coNP^O$

Suffices to assume $UP \nsubseteq RP$ which is implied by injective OWFs.

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O , $P^O \neq \hat{N} P^O \cap \text{coNP}^O$

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O , $P^O \neq \hat{N} P^O \cap \text{coNP}^O$

Main New Ingredient:

A Non-Interactive Zero Knowledge (NIZK) **proof** system in the random oracle model!

(Note: Fiat-Shamir only gives NIZK arguments.)

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O , $P^O \neq \hat{N} P^O \cap \text{coNP}^O$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O , $P^O \neq \hat{N} P^O \cap \text{coNP}^O$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

Can also build NIZK Proofs in URS model from a concrete cryptographic object we call **δ-Dense-PRHFs.**

δ-Dense-Pseudorandom-Hash-Functions

- Functions $H: \{0,1\}^n \to \{0,1\}^m$ satisfying three properties:
	- 1. Pseudorandom Output:
		- Let X be uniform over $\{0,1\}^n$ and U_m be uniform over $\{0,1\}^m$.
		- Then $H(X) \approx_c U_m$

δ-Dense-Pseudorandom-Hash-Functions

- Functions $H: \{0,1\}^n \to \{0,1\}^m$ satisfying three properties:
	- 1. Pseudorandom Output:
		- Let X be uniform over $\{0,1\}^n$ and U_m be uniform over $\{0,1\}^m$.
		- Then $H(X) \approx_c U_m$
	- 2. δ-Dense: The image is δ-Dense in the codomain.
		- Constant $\delta \in (0,1)$ which is "efficiently approximable".
		- $Pr[U_m \in Image(H)] = \delta \pm negl(n)$

δ-Dense-Pseudorandom-Hash-Functions

- Functions $H: \{0,1\}^n \to \{0,1\}^m$ satisfying three properties:
	- 1. Pseudorandom Output:
		- Let X be uniform over $\{0,1\}^n$ and U_m be uniform over $\{0,1\}^m$.
		- Then $H(X) \approx_c U_m$
	- 2. δ-Dense: The image is δ-Dense in the codomain.
		- Constant $\delta \in (0,1)$ which is "efficiently approximable".
		- $Pr[U_m \in Image(H)] = \delta \pm negl(n)$
	- 3. Preimage Pseudorandomness:
		- Let Y be uniform over $Image(H)$ and let $H^{-1}(y)$ output a random preimage of y .
		- Then $(X, H(X)) \approx_c (H^{-1}(Y), Y)$
Our Results

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O , $P^O \neq \hat{N} P^O \cap \text{coNP}^O$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

NIZK Proofs in URS model from δ-Dense-PRHFs

Assuming there exists a δ-Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS model.

37

Our Results

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O , $P^O \neq \hat{N} P^O \cap \text{coNP}^O$

NIZK Proofs in URS model from δ-Dense-PRHFs

Assuming there exists a δ -Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS model.

NIZK Proofs for NP in URS Model [BFM88]

- Goal: Prover P is trying to prove to a verifier V that $x \in L$.
- Setting:
	- Unbounded prover P
	- Computationally bounded (poly-sized) verifier V
	- URS model: P and V share uniformly random string
- Properties
	- **Completeness:** If all players are honest and $x \in L$, the verifier accepts.
	- **Soundness:** If $x \notin L$, no unbounded cheating prover should be able to convince an honest verifier to accept.
	- **Zero Knowledge:** Security against dishonest poly-sized verifiers.
		- There exists a PPT Sim such that $\forall x \in L$, Sim(x) ≈ (urs, P(urs, x))

NIZK Proofs for NP in Random Oracle Model

- Goal: Prover P is trying to prove to a verifier V that $x \in L$.
- Setting:
	- Unbounded prover P
	- Computationally bounded (poly-sized) verifier V
	- **Random Oracle model**: P and V have query access to a random oracle.
- Properties
	- **Completeness:** If all players are honest and $x \in L$, the verifier accepts.
	- **Soundness:** If $x \notin L$, no unbounded cheating prover should be able to convince an honest verifier to accept.
	- **Zero Knowledge:** Security against dishonest verifiers that can make polynomially many queries to the random oracle.
		- There exists a PPT Sim = (SimO, SimP) such that $\forall x \in L$, "(SimO, SimP(x)) \approx (O, P^O(x))"

Previous Work on NIZKs

Previous Work on NIZKs

Previous Work on NIZKs

Our Results

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O , $P^O \neq \hat{N} P^O \cap \text{coNP}^O$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

NIZK Proofs in URS model from δ-Dense-PRHFs

Assuming there exists a δ-Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS model.

44

- · Ingredients
	- Injective OWF: f
	- NIZK Proof $(P^{(.)}, V^{(.)}, Sim)$ in Random Oracle model for the language
		- $L' = \{y: \exists x, f(x) = y\}$: "y has a preimage"

- Ingredients
	- Injective OWF: f
	- NIZK Proof $(P^{(.)}, V^{(.)}, Sim)$ in Random Oracle model for the language
		- $L' = \{y : \exists x, f(x) = y\} : "y \text{ has a preimage" }$
- $L = \{(y, i) : (\exists x, f(x) = y \land x_i = 1)\}\$ Promise : y always has a preimage

- Ingredients
	- Injective OWF: f
	- NIZK Proof $(P^{(.)}, V^{(.)}, Sim)$ in Random Oracle model for the language
		- $L' = \{y : \exists x, f(x) = y\} : "y \text{ has a preimage" }$
- $L = \{(y, i) : (\exists x, f(x) = y \land x_i = 1)\}\$ Promise : y always has a preimage
- Our Language (with random oracle O)
	- $L^0 = \{ (y, i, \pi) : (\exists x, f(x) = y \land x_i = 1) \land V^0(y, \pi) = 1 \}$ "y has a preimage x where $x_i = \mathbf{1}''$ and " π is a valid proof that y has a preimage"

- Ingredients
	- Injective OWF: f
	- NIZK Proof $(P^{(.)}, V^{(.)}, Sim)$ in Random Oracle model for the language
		- $L' = \{y : \exists x, f(x) = y\} : "y \text{ has a preimage" }$
- $L = \{(y, i) : (\exists x, f(x) = y \land x_i = 1)\}\$ Promise : y always has a preimage
- Our Language (with random oracle O) • 1 = { , , : ∃, = ∧ 0 = 1 ∧ ¹ , = 1} Similar proof also works assuming a language $\mathcal{L} \in \mathcal{O}_I$ and $\mathcal{L} \in \mathcal{O}_I$ and $\mathcal{L} \in \mathcal{O}_I$ $I' = \{x, \pi, y\} \in \Gamma$ $L'' \in UP \backslash \mathsf{RP}$ in which case $L' = \{y : \exists w, (y, w) \in R_{L''}\}$ $L^0 = \{ (y, i, \pi) : (\exists w, (y, w) \in R_{L}, \land w_i = 1) \land V^0(y, \pi) = 1 \}$

$L^O \in NP^O$

$$
L^{O} = \{ (y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{O}(y, \pi) = 1 \}
$$

$L^O \in NP^O$

$$
L^{0} = \{ (y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{0}(y, \pi) = 1 \}
$$

 $D_{NP}^{O}((y, i, \pi), w)$

- 1. Check if $V^O(y, \pi)$ verifies. If not, then $(y, i, \pi) \notin L^O$. Reject.
- Check that for witness w, $f(w) = y$. If not, reject. $2.$
- Accept if $w_i = 1$. $\overline{3}$.

The correctness of $D_{NP}^{O}((y, i, \pi), w)$ follows from definition of L^{O} .

If NIZK perfectly sound*, $Pr_{O}[L^{O} \in coNP^{O}]=1$

$$
\bar{L}^0 = \{ (y, i, \pi) : (\nexists x, f(x) = y \land x_i = 1) \lor (V^0(y, \pi) = 0) \}
$$

If NIZK perfectly sound^{*}, $Pr_{\Omega}[L^{\circ} \in coNP^{\circ}]$ =1

$$
\bar{L}^0 = \{ (y, i, \pi) : (\nexists x, f(x) = y \land x_i = 1) \lor (V^0(y, \pi) = 0) \}
$$

 $D^O_{\mathit{coNP}}((y,i,\pi),w)$

- 1. Check if $V^0(y, \pi)$ verifies. If not, then $(y, i, \pi) \in \overline{L}^0$. Accept.
	- Otherwise, soundness of NIZK proof ensures $\exists x, f(x) = y$.
	- This x is *unique* since f is injective!
	- Expect witness w to be this unique x.
- 2. Check that for witness w, $f(w) = y$. If not, reject.
- 3. Accept if $w_i = 0$.

 \overline{a}

If NIZK is ZK, $Pr_{O}[L^{O} \notin P^{O}] = 1$

$$
L^{0} = \{(y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{0}(y, \pi) = 1\}
$$

If NIZK is ZK, $Pr_{0}[L^{0} \notin P^{0}] = 1$

$$
L^{0} = \{(y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{0}(y, \pi) = 1\}
$$

Assume $Pr_{\Omega} [L^0 \in P^0] > 0$.

Theorem from [BG81] implies there exists a polytime Turing Machine $D^{(\cdot)}$ which decides $L^{(\cdot)}$ with probability 1 over the choice of O.

If NIZK is ZK, $Pr_{Q}[L^{O} \notin P^{O}] = 1$

$$
L^{0} = \{(y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{0}(y, \pi) = 1\}
$$

Assume $Pr_{\Omega} [L^0 \in P^0] > 0$.

Theorem from [BG81] implies there exists a polytime Turing Machine $D^{(\cdot)}$ which decides $L^{(\cdot)}$ with probability 1 over the choice of O.

Then, w.h.p we could invert OWF f!

f-Inverter (y) :

- 1. For each i:
	- a. Use NIZK simulator to simulate a proof π that y has a preimage.
	- b. Set $x_i = D^{SimO}(y, i, \pi)$ (using NIZK simulator to simulate random oracle queries).
		- I. If π was a real proof, then D would output correct x_i .
		- II. Zero knowledge ensures that D acts similarly on simulated proof!

2. Output x.

Constructing NIZK Proofs in Random Oracle Model

NIZK Proofs for NP in the Random Oracle Model

- Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.
- Goal: Replace OWPs with random oracle.
	- (Trivial to replace URS with random oracle.)

NIZK Proofs for NP in the Random Oracle Model

- Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.
- Goal: Replace OWPs with random oracle.
	- (Trivial to replace URS with random oracle.)

[FLS90] Proof Overview 1. Build NIZK Proofs for NP in Hidden Bits Model (HB).

2. Instantiate HB with URS and OWP.

NIZK Proofs for NP in the Random Oracle Model

- Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.
- Goal: Replace OWPs with random oracle.
	- (Trivial to replace URS with random oracle.)

[FLS90] Proof Overview 1. Build NIZK Proofs for NP in Hidden Bits Model (HB).

2. Instantiate HB with URS and OWP.

Our Proof Overview

- 1. Build NIZK Proofs for NP in Z-Tamperable Hidden Bits Model (ZHB).
- 2. Instantiate ZHB with random oracle.

Prover can view all the hidden bits. Verifier can't view the hidden bits.

Instantiating the HB model with Random Oracle and URS?

Problem: y_i might not have a preimage. Lose completeness!

Instantiating the HB model with Random Oracle and URS?

Instantiating the HB model with Random Oracle and URS?

a preimage. Lose completeness! P can pick whichever he wants so r_i not uniformly random. Lose soundness!

- Same as Hidden Bits model except that P can lie about r_i if $r_i = o$.
	- Captures ability of dishonest P to lie by saying "has no preimage" when there is actually a preimage.
	- Honest P never lies about r_i.

- Observation: P can't lie too much.
	- V can run statistical tests on distribution of r to see if there are too many 1's.

- Observation: P can't lie too much.
	- V can run statistical tests on distribution of r to see if there are too many 1's.
- Key Idea: Add careful statistical tests to construction of NIZK proofs in the (regular) Hidden Bits model [FLS90].
	- Step 1: Carefully change parameters to make bad behavior more detectable.
	- Step 2: This requires statistical tests.
	- Step 3: Our analysis shows that any significant amount of cheating using the ZHB model will be caught with high probability.

 H

 $6 \bullet$

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

 $\overline{2}$

 $\overline{\mathbf{3}}$

 $\overline{4}$ 5

1 $\overline{2}$

 $\overline{\mathbf{3}}$

 $\overline{4}$

5

6

H

1. P finds permutation π such that $π(C_G) = H$ where C_G is Hamiltonian cycle of G.

 $\pi(G)$

 $\pi(G)$

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

H

Reveal non-edges of $\pi(G)$

1. P finds permutation π such that $π(C_G) = H$ where C_G is Hamiltonian cycle of G.

2. Show that H is a subgraph of π(G) by opening non-edges of π(G) in H to 0.

86

 $\pi(G)$

 $\pi(G)$

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

Reveal non-edges of $\pi(G)$

1. P finds permutation π such that $π(C_G) = H$ where C_G is Hamiltonian cycle of G.

2. Show that H is a subgraph of π(G) by opening non-edges of π(G) in H to 0.

Soundness: V knows that every non-edge in G corresponds to a non-edge in H => every edge in H corresponds to an edge in G => G must have a Hamiltonian cycle. 87

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

Reveal non-edges of $\pi(G)$

1. P finds permutation π such that $π(C_G) = H$ $\frac{w \cdot w}{w \cdot w}$

5 6 $\overline{0}$ Ω $\mathbf{0}$ $\overline{0}$ Ω

Ham Also works in **Z-Tamperable Hidden Bits** model since flipping o's to 1's only adds

2. Show that H is a subgraph of π(G) by opening non-edges of π(G) in H to 0.

Soundness: V knows that every non-edge in G corresponds to a non-edge in H => every edge in H corresponds to an edge in G => G edges to H! $\left.\rule{0pt}{13pt}\right.^{\tiny\textcircled{\tiny{0-0}}\quad\textcircled{\tiny{0}}}$ must have a Hamiltonian cycle. $_{\tiny\textcircled{\tiny{88}}}$

Assume: Hidden bit string r represents adjacency matrix of cycle graph

Reveal non-edges of $\pi(G)$

Zero Knowledge: Pick a random permutation π and "open" all non-edges of $\pi(G)$ to 0.

 Ω

 $\mathbf{0}$

2. Show that H is a subgraph of π(G) by opening non-edges of π(G) in H to 0.

1. P finds permutation π such that $π(C_G) = H$ where C_G is Hamiltonian cycle of G.

[FLS90] NIZK Proofs in Hidden Bits Model

- Warmup: Assume hidden bit string r is a random cycle graph.
	- Works in Z-Tamperable Hidden Bits Model!

[FLS90] NIZK Proofs in Hidden Bits Model

- Warmup: Assume hidden bit string r is a random cycle graph.
	- Works in Z-Tamperable Hidden Bits Model!
- What if r is not a cycle?
	- Random $n \times n$ graph unlikely to be a cycle.
	- [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

 \bullet M⁽ⁱ⁾ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.

 $M^{(i)}$

 $S_(i)$

Sample n^c x n^c matrices $M^{(i)}$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

 $M^{(i)}$

Reveal non-edges of $\pi(G)$

Reveal rows and columns not in S⁽ⁱ⁾, and reveal all non-edges of $\pi(G)$ in S⁽ⁱ⁾

Sample n^c x n^c matrices $M^{(i)}$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

 $M^{(i)}$

Reveal non-edges of $\pi(G)$

Reveal rows and columns not in S⁽ⁱ⁾, and reveal all non-edges of $\pi(G)$ in $S^{(i)}$

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

 $M^{(i)}$

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

 $M^{(i)}$

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- \bullet M⁽ⁱ⁾ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Recall: P can add '1's.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- \bullet $M^{(i)}$ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Recall: P can add '1's.

Problem: P can turn $M^{(i)}$ from **Good** to **Bad** by adding '1's.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- \bullet $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Recall: P can add '1's.

Problem: P can turn $M^{(i)}$ from **Good** to **Bad** by adding '1's.

Problem: P can pretend a **Bad** M(i) is **Good** as long as it contains a subgraph of $\pi(G)$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- \bullet $M^{(i)}$ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Recall: P can add '1's but cannot remove them.

Problem: P can turn M(i) from **Good** to **Bad** by adding '1's.

Problem: P can pretend a **Bad** M(i) is **Good** as long as it contains a subgraph of π(G).

P can only add '1's: All such M⁽ⁱ⁾ have at $least n+1 '1's.$

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- \bullet $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Recall: P can add '1's but cannot remove them.

Problem: P can turn M⁽ⁱ⁾ from **Good** to **Bad** by adding '1's.

Problem: P can pretend a **Bad** M(i) is **Good** as long as it contains a subgraph of $\pi(G)$.

P can only add '1's: All such M⁽ⁱ⁾ have at $least n+1 '1's.$

'1's of M⁽ⁱ⁾ must be contained in an $n \times n$ submatrix.

101

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- M(i) contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- M(i) contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Key Insight: If c is large, matrices become very sparse => Most matrices with at least n+1 '1's, do not fit all these '1's into an $n \times n$ submatrix!

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- \bullet M⁽ⁱ⁾ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Solution: V checks for expected number of matrices with at least n+1 '1's.

Problem: P can turn M(i) from **Good** to **Bad** by adding '1's.

Problem: P can pretend a **Bad** M(i) is **Good** as long as it contains a subgraph of $\pi(G)$.

P can only add '1's: All such M⁽ⁱ⁾ have at $least n+1 '1's.$

'1's of M⁽ⁱ⁾ must be contained in an $n \times n$ submatrix.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- \bullet $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Solution: V checks for expected number of matrices with at least n+1 '1's.

Problem: P can turn M(i) from **Good** to **Bad** by adding '1's.

Problem: P can pretend a **Bad** M(i) is **Good** as long as it contains a subgraph of $\pi(G)$.

Cheating P must add all Good M⁽ⁱ⁾ to count.

Not enough **Bad** matrices that fit in an $n \times n$ submatrix to make up for it_{s} .

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2C-1}$.

Case 1: Good M(i)

- \bullet M⁽ⁱ⁾ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is o everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Solution: V checks for expected number of matrices with at least n+1 '1's.

Problem: P can turn $M^{(i)}$ from **Good** to **Bad** by adding '1's.

Problem: P can pretend a **Bad** M(i) is **Good** as long as it contains a subgraph of $\pi(G)$.

Soundness in Z-Tamperable Hidden Bits Model!

- Warmup: Assume hidden bit string r is a random cycle graph.
	- Works in Z-Tamperable Hidden Bits Model!
- What if r is not a cycle?
	- Random $n \times n$ graph unlikely to be a cycle.
	- [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.
	- **Our Work:** Increase sparsity of matrices and add statistical checks to ensure that P must use at least one cycle graph.

Our Results

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O , $P^O \neq \hat{N} P^O \cap \text{coNP}^O$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

NIZK Proofs in URS model from δ-Dense-PRHFs

Assuming there exists a δ-Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS model.
Future Directions

- 1. Get an unconditional random oracle separation of P and $NP \cap coNP$.
- 2. Extend our techniques to get more separation results.
- 3. Instantiate a δ-Dense-PRHF from standard unstructured assumptions.
- 4. Build *efficient-prover* NIZK proofs from random oracles.

THANK YOU!!!

APPENDIX

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of M(i) to prove it was Bad.

1. M has exactly n 1's.

such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$

Set $c = 4$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

2. These 1's form a permutation submatrix.

3. The permutation is an n-cycle.

1. M has exactly n 1's.

By Chebyshev's Inequality, $Pr [# 1's \in [n - \sqrt{2n}, n + \sqrt{2n}]] \ge \frac{1}{2}$)

Therefore,

 $Pr[M has n 1's] \geq$ 1 $\frac{1}{2\sqrt{2n}}$ \sum $i = n - \sqrt{2n}$ $n + \sqrt{2n}$ $Pr[M \text{ has } i \text{ 1's}] \geq$ 1 $4\sqrt{2n}$

2. These 1's form a permutation submatrix.

Case 2: Bad M(i)

be 0.

Case 1: Good M(i)

- All other M(i).
- **P** reveals all of $M^{(i)}$ to prove it was Bad.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$

Set $c = 4$.

is 1 with probability $1/n^{2c-1}$.

 $M^{(i)}$ contains a submatrix $S^{(i)}$

matrix of a cycle graph on n

which is the adjacency

nodes, and $M^{(i)}$ is 0

• P uses submatrix $S^{(i)}$ for

protocol and reveals all

other rows and columns to

everywhere else.

3. The permutation is an n-cycle.

1. M has exactly n 1's.

By Chebyshev's Inequality, $Pr [# 1's \in [n - \sqrt{2n}, n + \sqrt{2n}]] \ge \frac{1}{2}$)

Therefore,

 $Pr[M has n 1's] \geq$ 1 $\frac{1}{2\sqrt{2n}}$ \sum $i = n - \sqrt{2n}$ $n + \sqrt{2n}$ $Pr[M \text{ has } i \text{ 1's}] \geq$ 1 $4\sqrt{2n}$

2. These 1's form a permutation submatrix.

Pr[1's form a permutation

 n^2

 ≥ 1 – Pr[two 1's in same column] – Pr[two 1's in same row $\geq 1 - \theta$ 1

3. The permutation is an n-cycle.

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Affected by c!

1. M has exactly n 1's.

By Chebyshev's Inequality, $Pr [# 1's \in [n - \sqrt{2n}, n + \sqrt{2n}]] \ge \frac{1}{2}$)

Therefore,

 $Pr[M has n 1's] \geq$ 1 $\frac{1}{2\sqrt{2n}}$ \sum $i = n - \sqrt{2n}$ $n + \sqrt{2n}$ $Pr[M \text{ has } i \text{ 1's}] \geq$ 1 $4\sqrt{2n}$

2. These 1's form a permutation submatrix.

Pr[1's form a permutation ≥ 1 – Pr[two 1's in same column] – Pr[two 1's in same row $\geq 1 - \theta$ 1 n^2

3. The permutation is an n-cycle. $Pr[n - cycle | permutation] =$ 1 \overline{n}

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

 $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.

Sample n^c x n^c matrices $M⁽ⁱ⁾$

Set $c = 4$.

such that each element of $M^{(i)}$

• P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Pr[M is Good] = $\Omega\left(\frac{1}{n^1}\right)$ $n^{1.5}$

1. M has exactly n 1's.

By Chebyshev's Inequality, $Pr [# 1's \in [n - \sqrt{2n}, n + \sqrt{2n}]] \ge \frac{1}{2}$)

Therefore,

 $Pr[M has n 1's] \geq$ 1 $\frac{1}{2\sqrt{2n}}$ \sum $i = n - \sqrt{2n}$ $n + \sqrt{2n}$ $Pr[M \text{ has } i \text{ 1's}] \geq$ 1 $4\sqrt{2n}$

2. These 1's form a permutation submatrix.

Pr[1's form a permutation ≥ 1 – Pr[two 1's in same column] – Pr[two 1's in same row $\geq 1 - \theta$ 1 n^2

3. The permutation is an n-cycle. $Pr[n - cycle | permutation] =$ 1 \overline{n}

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Let p_n = Pr[M has \geq n+ 1 1's]

Idea: Compute probability that a matrix with n+1 1's has

1. #1's $\leq 2n$

2. 1's form a permutation submatrix

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Let p_n = Pr[M has \geq n+ 1 1's]

Idea: Compute probability that a matrix with n+1 1's has

1. $\#1's \leq 2n$

2. 1's form a permutation submatrix

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Let p_n = Pr[M has \geq n+ 1 1's]

Idea: Compute probability that a matrix with n+1 1's has

1. $\#1's \leq 2n$

By Chernoff Bound: $Pr[#1's \leq 2n \mid #1's > n] \geq 1 - negl(n)/p_n$

2. 1's form a permutation submatrix

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Let p_n = Pr[M has \geq n+ 1 1's]

Idea: Compute probability that a matrix with n+1 1's has

1. $\#1's \leq 2n$

By Chernoff Bound: $Pr[#1's \leq 2n \mid #1's > n] \geq 1 - negl(n)/p_n$

2. 1's form a permutation submatrix

Similar to before:

 $Pr[1's form a permutation] \geq 1 - O$ 1 n^2

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Let p_n = Pr[M has \geq n+ 1 1's]

Idea: Compute probability that a matrix with n+1 1's has

 $\leq \left(1 - O\left(\frac{1}{n^2}\right)\right) + negl(n)/p_n$

1. $\#1's \leq 2n$

By Chernoff Bound: $Pr[#1's \leq 2n \mid #1's > n] \geq 1 - negl(n)/p_n$

2. 1's form a permutation submatrix

Similar to before:

 $Pr[1's form a permutation] \geq 1 - O$ 1 n^2

Set $c = 4$.

Sample n^c x n^c matrices $M⁽ⁱ⁾$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Case 1: Good M(i)

- $M^{(i)}$ contains a submatrix $S^{(i)}$ which is the adjacency matrix of a cycle graph on n nodes, and $M^{(i)}$ is 0 everywhere else.
- P uses submatrix $S^{(i)}$ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M(i)

- All other M(i).
- P reveals all of $M^{(i)}$ to prove it was Bad.

Let p_n = Pr[M has \geq n+ 1 1's]

Idea: Compute probability that a matrix with n+1 1's has

 $\leq \left(1 - O\left(\frac{1}{n^2}\right)\right) + negl(n)/p_n$

 $\leq p_n \cdot O\left(\frac{1}{n^2}\right)$

1. $\#1's \leq 2n$

By Chernoff Bound: $Pr[#1's \leq 2n \mid #1's > n] \geq 1 - negl(n)/p_n$

2. 1's form a permutation submatrix

Similar to before:

 $Pr[1's form a permutation] \geq 1 - O$ 1 n^2

P can't cheat on these because 1's do not fit in an n x n submatrix!

 n^2