Hard Languages in **NP ∩ coNP** and NIZK Proofs from Unstructured Hardness

Riddhi Ghosal, Yuval Ishai, Alexis Korb, Eyal Kushilevitz, Paul Lou, Amit Sahai

• Hard Language: Fully specified decision problems not in **P**.

- Hard Language: Fully specified decision problems not in **P**.
- NP ∩ coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.

- Hard Language: Fully specified decision problems not in **P**.
- NP ∩ coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.
- Candidate hard languages in $NP \cap coNP$ are highly structured and few.
 - Languages related to factoring and discrete log.
 - Stochastic Games [Condong2]
 - Construction from OWPs [Brassard79, BennettGill81]
 - Only known constructions of OWPs rely on factoring or discrete log

- Hard Language: Fully specified decision problems not in **P**.
- NP ∩ coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.
- Candidate hard languages in $NP \cap coNP$ are highly structured and few.
 - Languages related to factoring and discrete log.
 - Stochastic Games [Condong2]
 - Construction from OWPs [Brassard79, BennettGill81]
 - Only known constructions of OWPs rely on factoring or discrete log
- Note: This is not the case for promise problems.

- Hard Language: Fully specified decision problems not in **P**.
- NP ∩ coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.
- Candidate hard languages in $NP \cap coNP$ are highly structured and few.
 - Languages related to factoring and discrete log.
 - Stochastic Games [Condong2]
 - Construction from OWPs [Brassard79, BennettGill81]
 - Only known constructions of OWPs rely on factoring or discrete log.
- Note: This is not the case for promise problems.
- Maybe: Unclear how hard **NP** ∩ **coNP** actually is?
 - Most current candidates broken by quantum algorithms.
 - $P = NP \cap coNP$ holds for simple computational models such as decision trees.
 - No complete languages known.

- Hard Language: Fully specified decision problems not in **P**.
- NP ∩ coNP: Languages for which there membership and non-membership.
- Candidate hard languages in $NP \cap \, coN$
 - Languages related to factoring and discrete
 - Stochastic Games [Condong2]
 - Construction from OWPs [Brassard79, Beni
 - Only known constructions of OWPs rel
- Note: This is not the case for promise pr
- Maybe: Unclear how hard $NP \cap coNP$ a
 - Most current candidates broken by quantu
 - $P = NP \cap coNP$ holds for simple computational models such as decision trees.
 - No complete languages known.

Com put Peter Sarnak's Lecture 3(n) can be d in polyllogn, 3 Perhaps $3 \in P \Longrightarrow$ is orthogonal to 5 I DONT believe so since I believe factoring and hence M

- Hard Language: Fully specified decision problems not in **P**.
- NP ∩ coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.
- Candidate hard languages in $NP \cap coNP$ are highly structured and few.
 - Languages related to factoring and discrete log.
 - Stochastic Games [Condong2]
 - Construction from OWPs [Brassard79, BennettGill81]
 - Only known constructions of OWPs rely on factoring or discrete log.
- Note: This is not the case for promise problems.
- Maybe: Unclear how hard **NP** ∩ **coNP** actually is?
 - Most current candidates broken by quantum algorithms.
 - $P = NP \cap coNP$ holds for simple computational models such as decision trees.
 - No complete languages known.

- Hard Language: Fully specified decision problems not in **P**.
- NP ∩ coNP: Languages for which there exists an efficient NP verifier for both membership and non-membership.
- Candidate hard languages in $NP \cap coNP$ are highly structured and few.

Can we build a hard language in

NP \cap coNP from unstructured assumptions?

- Note: This is not the case for promise problems.
- Maybe: Unclear how hard **NP** ∩ **coNP** actually is?
 - Most current candidates broken by quantum algorithms.
 - $P = NP \cap coNP$ holds for simple computational models such as decision trees.
 - No complete languages known.

Private Key Encryption (Unstructured) vs Public Key Encryption (Structure) [Formalized by Impagliazzo and Rudich]

Hardness of **NP** ∩ **coNP** from Unstructured Assumptions

- No known random oracle separation of P and $NP \cap \, coNP$
 - [BennettGill81] Open problem since 1981.
 - [Tardos89] details some difficulties with this approach.

Hardness of **NP** ∩ **coNP** from Unstructured Assumptions

- No known random oracle separation of P and $NP \cap \, coNP$
 - [BennettGill81] Open problem since 1981.
 - [Tardos89] details some difficulties with this approach.
- No black-box constructions of hard languages in $NP \cap coNP$ from
 - OWFs [BlumImpagliazzo87, Rudich88, KahnSaksSmythoo]
 - Injective OWFs and Indistinguishability Obfuscation (iO) [BitanskyDegwekarVaikuntanathan21]
 - Implies no black-box constructions from many cryptographic primitives since iO + OWFs can be used to build a lot of crypto.

Hardness of **NP** ∩ **coNP** from Unstructured Assumptions

- No known random oracle separation of P and $NP \cap coNP$
 - [BennettGill81] Open problem since 1981.
 - [Tardos89] details some difficulties with this approach.
- No black-box constructions of hard languages in $NP \cap coNP$ from
 - OWFs [BlumImpagliazzo87, Rudich88, KahnSaksSmythoo]
 - Injective OWFs and Indistinguishability Obfuscation (iO) [BitanskyDegwekarVaikuntanathan21]
 - Implies no black-box constructions from many cryptographic primitives since iO + OWFs can be used to build a lot of crypto.

Can we build a hard language in

NP ∩ **coNP** from random oracles?

Random Oracle Separations of Complexity Classes

Random Oracle Separations of Complexity Classes

- A lot of exciting work in complexity theory
 - [BennettGill81] P, NP, and coNP separated by random oracles.
 - [RossmanServedioTan15] Polynomial hierarchy is infinite relative to a random oracle.
 - [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random oracle.

Random Oracle Separations of Complexity Classes

- A lot of exciting work in complexity theory
 - [BennettGill81] P, NP, and coNP separated by random oracles.
 - [RossmanServedioTan15] Polynomial hierarchy is infinite relative to a random oracle.
 - [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random oracle.
- Random Oracle Hypothesis [BG81]: random oracle separations of complexity classes imply a non-random-oracle separation of the same classes
 - [CCGHHRR92] False for IP and PSPACE
 - Plausibly true for feasible complexity classes.
- Similar hypothesis in cryptography:
 - Can heuristically construct a *concrete* language by instantiating the random oracle with a cryptographic hash function.

Main Theorem

If there exists injective OWFs, then with probability 1 over the choice of a random oracle $O, P^O \neq NP^O \cap coNP^O$

Main Theorem

If there exists injective OWFs, then with probability 1 over the choice of a random oracle $O, P^O \neq NP^O \cap coNP^O$

Our proof is constructive!

Main Theorem

If there exists injective OWFs, then with probability 1 over the choice of a random oracle $O, P^O \neq NP^O \cap coNP^O$

Suffices to assume UP ⊈ RP which is implied by injective OWFs.

Main Theorem

If $UP \not\subseteq RP$, then with probability 1 over the choice of a random oracle O, $P^{O} \neq NP^{O} \cap coNP^{O}$

Main Theorem

If $UP \nsubseteq RP$, then with probability 1 over the choice of a random oracle O, $P^{O} \neq NP^{O} \cap coNP^{O}$

Main New Ingredient:

A Non-Interactive Zero Knowledge (NIZK) **proof** system in the random oracle model!

(Note: Fiat-Shamir only gives NIZK <u>arguments</u>.)

Main Theorem

If $UP \not\subseteq RP$, then with probability 1 over the choice of a random oracle O, $P^{O} \neq NP^{O} \cap coNP^{O}$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

Main Theorem

If $UP \not\subseteq RP$, then with probability 1 over the choice of a random oracle O, $P^{O} \neq NP^{O} \cap coNP^{O}$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

Can also build NIZK Proofs in URS model from a concrete cryptographic object we call δ-Dense-PRHFs.

$\delta\text{-}Dense\text{-}Pseudorandom\text{-}Hash\text{-}Functions$

- Functions $H: \{0,1\}^n \to \{0,1\}^m$ satisfying three properties:
 - 1. Pseudorandom Output:
 - Let X be uniform over $\{0,1\}^n$ and U_m be uniform over $\{0,1\}^m$.
 - Then $H(X) \approx_{c} U_{m}$

$\delta\text{-}Dense\text{-}Pseudorandom\text{-}Hash\text{-}Functions$

- Functions $H: \{0,1\}^n \to \{0,1\}^m$ satisfying three properties:
 - 1. Pseudorandom Output:
 - Let X be uniform over $\{0,1\}^n$ and U_m be uniform over $\{0,1\}^m$.
 - Then $H(X) \approx_c U_m$
 - 2. δ -Dense: The image is δ -Dense in the codomain.
 - Constant $\delta \in (0,1)$ which is "efficiently approximable".
 - $Pr[U_m \in Image(H)] = \delta \pm negl(n)$

$\delta\text{-}Dense\text{-}Pseudorandom\text{-}Hash\text{-}Functions$

- Functions $H: \{0,1\}^n \to \{0,1\}^m$ satisfying three properties:
 - 1. Pseudorandom Output:
 - Let X be uniform over $\{0,1\}^n$ and U_m be uniform over $\{0,1\}^m$.
 - Then $H(X) \approx_c U_m$
 - 2. δ -Dense: The image is δ -Dense in the codomain.
 - Constant $\delta \in (0,1)$ which is "efficiently approximable".
 - $Pr[U_m \in Image(H)] = \delta \pm negl(n)$
 - 3. Preimage Pseudorandomness:
 - Let *Y* be uniform over *Image*(*H*) and let $H^{-1}(y)$ output a random preimage of *y*.
 - Then $(X, H(X)) \approx_c (H^{-1}(Y), Y)$

Our Results

Main Theorem

If $UP \not\subseteq RP$, then with probability 1 over the choice of a random oracle O, $P^{O} \neq NP^{O} \cap coNP^{O}$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

NIZK Proofs in URS model from δ -Dense-PRHFs

Assuming there exists a δ -Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS model.

Our Results

Main Theorem

If $UP \not\subseteq RP$, then with probability 1 over the choice of a random oracle O, $P^{O} \neq NP^{O} \cap coNP^{O}$

NIZK Proofs in URS model from δ -Dense-PRHFs

Assuming there exists a δ -Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS model.

NIZK Proofs for NP in URS Model [BFM88]

- Goal: Prover P is trying to prove to a verifier V that $x \in L$.
- Setting:
 - Unbounded prover P
 - Computationally bounded (poly-sized) verifier V
 - URS model : P and V share uniformly random string
- Properties
 - Completeness: If all players are honest and $x \in L$, the verifier accepts.
 - Soundness: If $x \notin L$, no unbounded cheating prover should be able to convince an honest verifier to accept.
 - Zero Knowledge: Security against dishonest poly-sized verifiers.
 - There exists a PPT Sim such that $\forall x \in L$, Sim(x) \approx (urs, P(urs, x))

NIZK Proofs for NP in Random Oracle Model

- Goal: Prover P is trying to prove to a verifier V that $x \in L$.
- Setting:
 - Unbounded prover P
 - Computationally bounded (poly-sized) verifier V
 - Random Oracle model: P and V have query access to a random oracle.
- Properties
 - Completeness: If all players are honest and $x \in L$, the verifier accepts.
 - Soundness: If $x \notin L$, no unbounded cheating prover should be able to convince an honest verifier to accept.
 - Zero Knowledge: Security against dishonest verifiers that can make polynomially many queries to the random oracle.
 - There exists a PPT Sim = (SimO, SimP) such that $\forall x \in L$, "(SimO, SimP(x)) \approx (O, P^O(x))"

Previous Work on NIZKs

	Proofs (secure against unbounded prover)	Arguments (secure against PPT prover)
URS (uniform random string)	 OWPs [FLS90, BY96, CL18] DLIN on bilinear groups [GOS06] iO and OWFs [BP15] 	 Random oracle [FS86] Many assumptions
SRS (structured random string)	 OWFs [Pso5] (unbounded prover) Lattices [CCH+19, PS19] Many assumptions 	 Many assumptions

Previous Work on NIZKs

	Proofs (secure against unbounded prover)	Arguments (secure against PPT prover)
URS (uniform random string)	 OWPs [FLS90, BY96, CL18] DLIN on bilinear groups [GOS06] iO and OWFs [BP15] 	 Random oracle [FS86] Many assumptions
SRS (structured random string)		Many assumptions ructured Hardness
		d not post-quantum, except maybe iO)

Previous Work on NIZKs

	Proofs (secure against unbounded prover)	Arguments (secure against PPT prover)
URS (uniform random string)	 OWPs [FLS90, BY96, CL18] DLIN on bilinear groups [GOS06] iO and OWFs [BP15] Random oracle or δ-Dense-PRHF [Our Work] 	 Random oracle [FS86] Many assumptions
SRS (structured random string)		 Many assumptions uctured dness

Our Results

Main Theorem

If $UP \not\subseteq RP$, then with probability 1 over the choice of a random oracle O, $P^{O} \neq NP^{O} \cap coNP^{O}$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

NIZK Proofs in URS model from δ -Dense-PRHFs

Assuming there exists a δ -Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS model.

- Ingredients
 - Injective OWF: f
 - NIZK Proof $(P^{(.)}, V^{(.)}, Sim)$ in Random Oracle model for the language
 - $L' = \{y: \exists x, f(x) = y\}: "y has a preimage"$

- Ingredients
 - Injective OWF: f
 - NIZK Proof $(P^{(.)}, V^{(.)}, Sim)$ in Random Oracle model for the language
 - $L' = \{y: \exists x, f(x) = y\}: "y has a preimage"$
- $L = \{(y, i): (\exists x, f(x) = y \land x_i = 1)\}$ Promise : y always has a preimage

- Ingredients
 - Injective OWF: f
 - NIZK Proof $(P^{(.)}, V^{(.)}, Sim)$ in Random Oracle model for the language
 - $L' = \{y: \exists x, f(x) = y\}: "y has a preimage"$
- $L = \{(y, i): (\exists x, f(x) = y \land x_i = 1)\}$ Promise : y always has a preimage
- Our Language (with random oracle O)
 - $L^{O} = \{(y, i, \pi): (\exists x, f(x) = y \land x_{i} = 1) \land V^{O}(y, \pi) = 1\}$ "y has a preimage x where $x_{i} = 1$ " and " π is a valid proof that y has a preimage"

- Ingredients
 - Injective OWF: f
 - NIZK Proof $(P^{(.)}, V^{(.)}, Sim)$ in Random Oracle model for the language
 - $L' = \{y: \exists x, f(x) = y\}: "y has a preimage"$
- $L = \{(y, i): (\exists x, f(x) = y \land x_i = 1)\}$ Promise : y always has a preimage
- Our Language (with random oracle O) • Similar proof also works assuming a language $L'' \in UP \setminus RP$ in which case $L' = \{y: \exists w, (y, w) \in R_{L''}\}$ $L^0 = \{(y, i, \pi): (\exists w, (y, w) \in R_{L''} \land w_i = 1) \land V^0(y, \pi) = 1\}$

$L^{O} \in NP^{O}$

$$L^{O} = \{ (y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{O}(y, \pi) = 1 \}$$

$L^{O} \in NP^{O}$

$$L^{0} = \{(y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{0}(y, \pi) = 1\}$$

 $D^{O}_{NP}((y,i,\pi),w)$

- 1. Check if $V^{O}(y, \pi)$ verifies. If not, then $(y, i, \pi) \notin L^{O}$. Reject.
- 2. Check that for witness w, f(w) = y. If not, reject.
- 3. Accept if $w_i = 1$.

The correctness of $D_{NP}^{O}((y, i, \pi), w)$ follows from definition of L^{O} .

If NIZK perfectly sound*, $Pr_O[L^O \in coNP^O]=1$

$$\overline{L}^{o} = \{(y, i, \pi) \colon (\nexists x, f(x) = y \land x_{i} = 1) \lor (V^{o}(y, \pi) = 0)\}$$

If NIZK perfectly sound*, $Pr_O[L^O \in coNP^O]=1$

$$\overline{L}^{O} = \{ (y, i, \pi) : (\nexists x, f(x) = y \land x_{i} = 1) \lor (V^{O}(y, \pi) = 0) \}$$

 $D^{O}_{coNP}((y,i,\pi),w)$

- 1. Check if $V^{O}(y, \pi)$ verifies. If not, then $(y, i, \pi) \in \overline{L}^{O}$. Accept.
 - Otherwise, soundness of NIZK proof ensures $\exists x, f(x) = y$.
 - This x is *unique* since f is injective!
 - Expect witness w to be this unique x.
- 2. Check that for witness w, f(w) = y. If not, reject.
- 3. Accept if $w_i = 0$.

If NIZK is ZK, $Pr_O[L^O \notin P^O] = 1$

$$L^{0} = \{(y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{0}(y, \pi) = 1\}$$

If NIZK is ZK, $Pr_O[L^O \notin P^O] = 1$

$$L^{0} = \{(y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{0}(y, \pi) = 1\}$$

Assume $Pr_0 [L^0 \in P^0] > 0$.

Theorem from [BG81] implies there exists a polytime Turing Machine $D^{(\cdot)}$ which decides $L^{(\cdot)}$ with probability 1 over the choice of O.

If NIZK is ZK, $Pr_O[L^O \notin P^O] = 1$

$$L^{0} = \{(y, i, \pi) : (\exists x, f(x) = y \land x_{i} = 1) \land V^{0}(y, \pi) = 1\}$$

Assume $Pr_0 [L^0 \in P^0] > 0$.

Theorem from [BG81] implies there exists a polytime Turing Machine $D^{(\cdot)}$ which decides $L^{(\cdot)}$ with probability 1 over the choice of O.

Then, w.h.p we could invert OWF f!

f-Inverter(y):

- 1. For each i:
 - a. Use NIZK simulator to simulate a proof π that y has a preimage.
 - b. Set $x_i = D^{SimO}(y, i, \pi)$ (using NIZK simulator to simulate random oracle queries).
 - I. If π was a real proof, then D would output correct x_i .
 - II. Zero knowledge ensures that D acts similarly on simulated proof!

2. Output x.

Constructing NIZK Proofs in Random Oracle Model

NIZK Proofs for NP in the Random Oracle Model

- Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.
- Goal: Replace OWPs with random oracle.
 - (Trivial to replace URS with random oracle.)

NIZK Proofs for NP in the Random Oracle Model

- Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.
- Goal: Replace OWPs with random oracle.
 - (Trivial to replace URS with random oracle.)

[FLS90] Proof Overview 1. Build NIZK Proofs for NP in Hidden Bits Model (HB).

2. Instantiate HB with URS and OWP.

NIZK Proofs for NP in the Random Oracle Model

- Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.
- Goal: Replace OWPs with random oracle.
 - (Trivial to replace URS with random oracle.)

[FLS90] Proof Overview 1. Build NIZK Proofs for NP in Hidden Bits Model (HB).

2. Instantiate HB with URS and OWP.

Our Proof Overview

- Build NIZK Proofs for NP in Z-Tamperable Hidden Bits Model (ZHB).
- 2. Instantiate ZHB with random oracle.

Prover can view all the hidden bits.

Verifier can't view the hidden bits.

Instantiating the HB model with Random Oracle and URS?

Problem: y_i might not have a preimage. Lose completeness!

Instantiating the HB model with Random Oracle and URS?

Instantiating the HB model with Random Oracle and URS?

a preimage. Lose completeness! Problem: y_i might have multiple preimages. P can pick whichever he wants so r_i not uniformly random. Lose soundness!

V can't easily determine if y_i has a preimage or not.

- Same as Hidden Bits model except that P can lie about r_i if $r_i = o$.
 - Captures ability of dishonest P to lie by saying "has no preimage" when there is actually a preimage.
 - Honest P never lies about r_i.

- Observation: P can't lie too much.
 - V can run statistical tests on distribution of r to see if there are too many 1's.

- Observation: P can't lie too much.
 - V can run statistical tests on distribution of r to see if there are too many 1's.
- Key Idea: Add careful statistical tests to construction of NIZK proofs in the (regular) Hidden Bits model [FLS90].
 - Step 1: Carefully change parameters to make bad behavior more detectable.
 - Step 2: This requires statistical tests.
 - Step 3: Our analysis shows that any significant amount of cheating using the ZHB model will be caught with high probability.

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

	1	2	3	4	5	6
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	0	1	0	0	0	0
5	0	0	0	0	0	1
6	0	0	0	1	0	0

Н

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

1	2	3	4	5	6
0	0	1	0	0	0
1	0	0	0	0	0
0	0	0	0	1	0
0	1	0	0	0	0
0	0	0	0	0	1
0	0	0	1	0	0
	1 0 0 0 0 0	0 0 1 0 0 0 0 1	0 0 1 1 0 0 0 0 0 0 0 0 0 1 0	0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1

Н

1. P finds permutation π such that $\pi(C_G) = H$ where C_G is Hamiltonian cycle of G.

	1	2	3	4	5	6
1	0	1	1	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
5	1	0	1	0	0	1
6	1	1	0	0	0	0

	1	2	3	4	5	6
1	0	0	1	0	1	0
2	1	0	1	0	0	0
2	0	0	0	0	1	0
4	1	1	0	0	1	0
4 5	0	0	0	0	0	1
6	0	0	0	1	0	0

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

	1	2	3	4	5	6
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	0	1	0	0	0	0
5	0	0	0	0	0	1
6	0	0	0	1	0	0

Н

1. P finds permutation π such that $\pi(C_G) = H$ where C_G is Hamiltonian cycle of G.

2. Show that H is a subgraph of $\pi(G)$ by opening non-edges of $\pi(G)$ in H to o.

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

	1	2	3	4	5	6
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	0	1	0	0	0	0
5	0	0	0	0	0	1
6	0	0	0	1	0	0

1. P finds permutation π such that $\pi(C_G) = H$ where C_G is Hamiltonian cycle of G.

	1	2	3	4	5	6
1	0	1	1	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
5	1	0	1	0	0	1
6	1	1	0	0	0	0

	1	2	3	4	5	6
1	0	0	1	0	1	0
2	1	0	1	0	0	0
3	0	0	0	0	1	0
4	1	1	0	0	1	0
5	0	0	0	0	0	1
6	0	0	0	1	0	0

Show that H is a subgraph of π(G) by opening non-edges of π(G) in H to o.

Soundness: V knows that every non-edge in G corresponds to a non-edge in H => every edge in H corresponds to an edge in G => G must have a Hamiltonian cycle.

Assume: Hidden bit string r represents adjacency matrix of cycle graph H.

	1	2	3	4	5	6
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	0	0	1	0
4	0	1	0	0	0	0
5	0	0	0	0	0	1
6	0	0	0	1	0	0

1. P finds permutation π such that $\pi(C_G) = H$

where

Ham

Also works in **Z-Tamperable Hidden Bits** model since flipping o's to 1's only adds edges to H!

Show that H is a subgraph of π(G) by opening non-edges of π(G) in H to o.

Soundness: V knows that every non-edge in G corresponds to a non-edge in H => every edge in H corresponds to an edge in G => G must have a Hamiltonian cycle.

н

 $\pi(G)$

Reveal non-edges of $\pi(G)$ Assume: Hidden bit string r represents adjacency *matrix of cycle graph* Zero Knowledge: Pick a random permutation π and "open" all 2. Show that H is a subgraph of $\pi(G)$ by non-edges of $\pi(G)$ to 0. opening non-edges of $\pi(G)$ in H to o. 1. P finds permutation n such that $\pi(C_G) = H$ where C_{G} is Hamiltonian cycle of G.

 $\pi(G)$

[FLS90] NIZK Proofs in Hidden Bits Model

- Warmup: Assume hidden bit string r is a random cycle graph.
 - Works in Z-Tamperable Hidden Bits Model!

[FLS90] NIZK Proofs in Hidden Bits Model

- Warmup: Assume hidden bit string r is a random cycle graph.
 - Works in Z-Tamperable Hidden Bits Model!
- What if r is not a cycle?
 - Random $n \times n$ graph unlikely to be a cycle.
 - [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

 M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else. M⁽ⁱ⁾

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

M⁽ⁱ⁾

6

+

5

0

1

6

Reveal non-edges of $\pi(G)$

	1	2	3	4	5	6
1	0	0		0		0
2		0		0	0	0
3	0	0	0	0		0
4			0	0		0
5	0	0	0	0	0	
6	0	0	0		0	0

Reveal rows and columns not in $S^{(i)}$, and reveal all non-edges of $\pi(G)$ in $S^{(i)}$

						0			/			
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0		0	0	0	0		0	0
0		0	0	0		0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0		0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0			0	0	0	0	0	0	0		0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0		0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0		0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

M⁽ⁱ⁾

Reveal non-edges of $\pi(G)$

	1	2	3	4	5	6
1	0	0		0		0
2		0		0	0	0
3	0	0	0	0		0
4			0	0		0
5	0	0	0	0	0	
6	0	0	0		0	0

Reveal rows and columns not in $S^{(i)}$, and reveal all non-edges of $\pi(G)$ in $S^{(i)}$

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0		0	0	0	0		0	0
0		0	0	0		0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0		0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0			0	0	0	0	0	0	0		0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0		0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0		0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

6

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

M⁽ⁱ⁾

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

M⁽ⁱ⁾

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Recall: P can add `1's.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Recall: P can add `1's.

Problem: P can turn M⁽ⁱ⁾ from **Good** to **Bad** by adding '1's.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Recall: P can add `1's.

Problem: P can turn M⁽ⁱ⁾ from Good to Bad by adding '1's.

Problem: P can pretend a Bad $M^{(i)}$ is Good as long as it contains a subgraph of $\pi(G)$.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Recall: P can add `1's but cannot remove them.

Problem: P can turn M⁽ⁱ⁾ from Good to Bad by adding '1's.

Problem: P can pretend a Bad $M^{(i)}$ is Good as long as it contains a subgraph of $\pi(G)$. P can only add `1's: All such M⁽ⁱ⁾ have at least n+1 `1's.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Recall: P can add `1's but cannot remove them.

Problem: P can turn M⁽ⁱ⁾ from Good to Bad by adding '1's.

Problem: P can pretend a **Bad** $M^{(i)}$ is **Good** as long as it contains a subgraph of $\pi(G)$. P can only add `1's: All such M⁽ⁱ⁾ have at least n+1 `1's.

`1's of M⁽ⁱ⁾ must be contained in an $n \times n$ submatrix.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Key Insight: If c is large, matrices become very sparse
=> Most matrices with at least n+1 `1's, do not fit all
these `1's into an n×n submatrix!

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Solution: V checks for expected number of matrices with at least n+1 `1's.

Problem: P can turn M⁽ⁱ⁾ from **Good** to **Bad** by adding '1's.

Problem: P can pretend a **Bad** $M^{(i)}$ is **Good** as long as it contains a subgraph of $\pi(G)$. P can only add `1's: All such M⁽ⁱ⁾ have at least n+1 `1's.

`1's of M⁽ⁱ⁾ must be contained in an $n \times n$ submatrix.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Solution: V checks for expected number of matrices with at least n+1 `1's.

Problem: P can turn M⁽ⁱ⁾ from **Good** to **Bad** by adding '1's.

Problem: P can pretend a Bad $M^{(i)}$ is Good as long as it contains a subgraph of $\pi(G)$. Cheating P must add all **Good** M⁽ⁱ⁾ to count.

Not enough **Bad** matrices that fit in an $n \times n$ submatrix to make up for it,

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2C-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is o everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be o.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Solution: V checks for expected number of matrices with at least n+1 `1's.

Problem: P can turn M⁽ⁱ⁾ from Good to Bad by adding '1's.

Problem: P can pretend a Bad $M^{(i)}$ is Good as long as it contains a subgraph of $\pi(G)$. Soundness in Z-Tamperable Hidden Bits Model!

- Warmup: Assume hidden bit string r is a random cycle graph.
 - Works in Z-Tamperable Hidden Bits Model!
- What if r is not a cycle?
 - Random $n \times n$ graph unlikely to be a cycle.
 - [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.
 - **Our Work:** Increase sparsity of matrices and add statistical checks to ensure that P must use at least one cycle graph.

Our Results

Main Theorem

If $UP \not\subseteq RP$, then with probability 1 over the choice of a random oracle O, $P^{O} \neq NP^{O} \cap coNP^{O}$

NIZK Proofs in Random Oracle Model

There exists an (unbounded-prover) NIZK proof system for NP in the random oracle model.

NIZK Proofs in URS model from δ -Dense-PRHFs

Assuming there exists a δ -Dense-PRHF,

there exists an (unbounded-prover) NIZK proof system for NP in the URS model.

Future Directions

- 1. Get an unconditional random oracle separation of P and $NP \cap coNP$.
- 2. Extend our techniques to get more separation results.
- 3. Instantiate a δ -Dense-PRHF from standard unstructured assumptions.
- 4. Build *efficient-prover* NIZK proofs from random oracles.

THANK YOU!!!

APPENDIX

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

1. M has exactly n 1's.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Set c = 4.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

2. These 1's form a permutation submatrix.

3. The permutation is an n-cycle.

1. M has exactly n 1's.

By Chebyshev's Inequality, $\Pr\left[\#1's \in \left[n - \sqrt{2n}, n + \sqrt{2n}\right]\right] \ge \frac{1}{2}$

Therefore,

 $\Pr[M \text{ has } n \ 1's] \ge \frac{1}{2\sqrt{2n}} \sum_{i=n-\sqrt{2n}}^{n+\sqrt{2n}} \Pr[M \text{ has } i \ 1's] \ge \frac{1}{4\sqrt{2n}}$

2. These 1's form a permutation submatrix.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

3. The permutation is an n-cycle.

Set c = 4.

such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

1. M has exactly n 1's.

By Chebyshev's Inequality, $\Pr\left[\#1's \in \left[n - \sqrt{2n}, n + \sqrt{2n}\right]\right] \ge \frac{1}{2}$

Therefore,

 $\Pr[M \text{ has } n \ 1's] \ge \frac{1}{2\sqrt{2n}} \sum_{i=n-\sqrt{2n}}^{n+\sqrt{2n}} \Pr[M \text{ has } i \ 1's] \ge \frac{1}{4\sqrt{2n}}$

2. These 1's form a permutation submatrix.

Pr[1's form a permutation]

 $\geq 1 - \Pr[two \ 1's \ in \ same \ column] - \Pr[two \ 1's \ in \ same \ row]$ $\geq 1 - O\left(\frac{1}{n^2}\right)$

3. The permutation is an n-cycle.

is 1 with probability $1/n^{2c-1}$.

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾

such that each element of M⁽ⁱ⁾

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Affected by c!

1. M has exactly n 1's.

By Chebyshev's Inequality, $\Pr\left[\#1's \in \left[n - \sqrt{2n}, n + \sqrt{2n}\right]\right] \ge \frac{1}{2}$

Therefore,

 $\Pr[M \text{ has } n \ 1's] \ge \frac{1}{2\sqrt{2n}} \sum_{i=n-\sqrt{2n}}^{n+\sqrt{2n}} \Pr[M \text{ has } i \ 1's] \ge \frac{1}{4\sqrt{2n}}$

2. These 1's form a permutation submatrix.

 $\begin{aligned} &\Pr[1's \ form \ a \ permutation] \\ &\geq 1 - \Pr[two \ 1's \ in \ same \ column] - \Pr[two \ 1's \ in \ same \ row] \\ &\geq 1 - O\left(\frac{1}{n^2}\right) \end{aligned}$

3. The permutation is an n-cycle. $Pr[n - cycle | permutation] = \frac{1}{n}$

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Set c = 4. Sample n^c x n^c matrices M⁽ⁱ⁾

such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

$\Pr[\mathsf{M} \text{ is Good}] = \Omega\left(\frac{1}{n^{1.5}}\right)$

1. M has exactly n 1's.

By Chebyshev's Inequality, $\Pr\left[\#1's \in \left[n - \sqrt{2n}, n + \sqrt{2n}\right]\right] \ge \frac{1}{2}$

Therefore,

 $\Pr[M \text{ has } n \ 1's] \ge \frac{1}{2\sqrt{2n}} \sum_{i=n-\sqrt{2n}}^{n+\sqrt{2n}} \Pr[M \text{ has } i \ 1's] \ge \frac{1}{4\sqrt{2n}}$

2. These 1's form a permutation submatrix.

 $\begin{aligned} &\Pr[1's \ form \ a \ permutation] \\ &\geq 1 - \Pr[two \ 1's \ in \ same \ column] - \Pr[two \ 1's \ in \ same \ row] \\ &\geq 1 - O\left(\frac{1}{n^2}\right) \end{aligned}$

3. The permutation is an n-cycle. $Pr[n - cycle | permutation] = \frac{1}{n}$

Sample $n^{c} x n^{c}$ matrices $M^{(i)}$ such that each element of $M^{(i)}$ is 1 with probability $1/n^{2c-1}$.

Set c = 4.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Let $p_n = Pr[M \text{ has } \ge n+11's]$

Idea: Compute probability that a matrix with n+1 1's has

1. #1's \leq 2n

2. 1's form a permutation submatrix

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Let $p_n = Pr[M has \ge n+11's]$

Idea: Compute probability that a matrix with n+1 1's has

1. #1's \leq 2n

2. 1's form a permutation submatrix

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Let $p_n = Pr[M \text{ has} \ge n+11's]$

```
Idea: Compute probability that a matrix with n+1 1's has
```

1. #1's \leq 2n

```
By Chernoff Bound:

\Pr[\#1's \le 2n \mid \#1's > n] \ge 1 - negl(n)/p_n
```

2. 1's form a permutation submatrix

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Let $p_n = Pr[M \text{ has} \ge n+11's]$

```
Idea: Compute probability that a matrix with n+1 1's has
```

1. #1's \leq 2n

By Chernoff Bound: $\Pr[\#1's \le 2n \mid \#1's > n] \ge 1 - negl(n)/p_n$

2. 1's form a permutation submatrix

Similar to before:

 $\Pr[1's form \ a \ permutation] \ge 1 - O\left(\frac{1}{n^2}\right)$

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Let $p_n = Pr[M \text{ has} \ge n+1 1's]$

Idea: Compute probability that a matrix with n+1 1's has

 $\leq \left(1 - O\left(\frac{1}{n^2}\right)\right) + negl(n)/p_n$

1. #1's \leq 2n

By Chernoff Bound: $\Pr[\#1's \le 2n \mid \#1's > n] \ge 1 - negl(n)/p_n$

2. 1's form a permutation submatrix

Similar to before:

 $\Pr[1's form \ a \ permutation] \ge 1 - O\left(\frac{1}{n^2}\right)$

Set c = 4.

Sample n^c x n^c matrices M⁽ⁱ⁾ such that each element of M⁽ⁱ⁾ is 1 with probability 1/n^{2c-1}.

Case 1: Good M⁽ⁱ⁾

- M⁽ⁱ⁾ contains a submatrix S⁽ⁱ⁾ which is the adjacency matrix of a cycle graph on n nodes, and M⁽ⁱ⁾ is 0 everywhere else.
- P uses submatrix S⁽ⁱ⁾ for protocol and reveals all other rows and columns to be 0.

Case 2: Bad M⁽ⁱ⁾

- All other M⁽ⁱ⁾.
- P reveals all of M⁽ⁱ⁾ to prove it was Bad.

Let $p_n = Pr[M has \ge n+11's]$

Idea: Compute probability that a matrix with n+1 1's has

 $\leq \left(1 - O\left(\frac{1}{n^2}\right)\right) + negl(n)/p_n$

 $\leq p_n \cdot O\left(\frac{1}{n^2}\right)$

1. #1's \leq 2n

By Chernoff Bound: $\Pr[\#1's \le 2n \mid \#1's > n] \ge 1 - negl(n)/p_n$

2. 1's form a permutation submatrix

Similar to before:

 $\Pr[1's form \ a \ permutation] \ge 1 - O\left(\frac{1}{n^2}\right)$