
Hard Languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 and
NIZK Proofs from Unstructured Hardness

Riddhi Ghosal, Yuval Ishai, Alexis Korb, Eyal Kushilevitz, Paul Lou, Amit Sahai

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• Hard Language: Fully specified decision problems not in 𝐏.

• 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃:	Languages for which there exists an efficient NP verifier for both
membership and non-membership.

• Candidate hard languages in 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 are highly structured and few.
• Factoring
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log.

• Note: This is not the case for promise problems.

• Maybe: Unclear how hard 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 actually is?
• Most current candidates broken by quantum algorithms.
• P = 	𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 holds for simple computational models such as decision trees.
• No complete languages known. 2

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• Hard Language: Fully specified decision problems not in 𝐏.

• 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏:	Languages for which there exists an efficient 𝐍𝐏 verifier for both
membership and non-membership.

• Candidate hard languages in 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 are highly structured and few.
• Factoring
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log.

• Note: This is not the case for promise problems.

• Maybe: Unclear how hard 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 actually is?
• Most current candidates broken by quantum algorithms.
• P = 	𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 holds for simple computational models such as decision trees.
• No complete languages known. 3

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• Hard Language: Fully specified decision problems not in 𝐏.

• 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏:	Languages for which there exists an efficient 𝐍𝐏 verifier for both
membership and non-membership.

• Candidate hard languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 are highly structured and few.
• Languages related to factoring and discrete log.
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log

• Note: This is not the case for promise problems.

• Maybe: Unclear how hard 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 actually is?
• Most current candidates broken by quantum algorithms.
• P = 	𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 holds for simple computational models such as decision trees.
• No complete languages known.

4

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• Hard Language: Fully specified decision problems not in 𝐏.

• 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏:	Languages for which there exists an efficient 𝐍𝐏 verifier for both
membership and non-membership.

• Candidate hard languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 are highly structured and few.
• Languages related to factoring and discrete log.
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log

• Note: This is not the case for promise problems.

• Maybe: Unclear how hard 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 actually is?
• Most current candidates broken by quantum algorithms.
• P = 	𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 holds for simple computational models such as decision trees.
• No complete languages known.

5

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• Hard Language: Fully specified decision problems not in 𝐏.

• 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏:	Languages for which there exists an efficient 𝐍𝐏 verifier for both
membership and non-membership.

• Candidate hard languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 are highly structured and few.
• Languages related to factoring and discrete log.
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log.

• Note: This is not the case for promise problems.

• Maybe: Unclear how hard 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 actually is?
• Most current candidates broken by quantum algorithms.
• 𝐏 = 	𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 holds for simple computational models such as decision trees.
• No complete languages known.

6

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• Hard Language: Fully specified decision problems not in 𝐏.

• 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏:	Languages for which there exists an efficient NP verifier for both
membership and non-membership.

• Candidate hard languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 are highly structured and few.
• Languages related to factoring and discrete log
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log.

• Note: This is not the case for promise problems.

• Maybe: Unclear how hard 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 actually is?
• Most current candidates broken by quantum algorithms.
• 𝐏 = 	𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 holds for simple computational models such as decision trees.
• No complete languages known.

Peter Sarnak’s Lecture

7

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• Hard Language: Fully specified decision problems not in 𝐏.

• 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃:	Languages for which there exists an efficient NP verifier for both
membership and non-membership.

• Candidate hard languages in 𝑁𝑃 ∩ 𝐜𝐨𝐍𝐏 are highly structured and few.
• Languages related to factoring and discrete log
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log.

• Note: This is not the case for promise problems.

• Maybe: Unclear how hard 𝑁𝑃 ∩ coNP actually is?
• Most current candidates broken by quantum algorithms.
• P = 	𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 holds for simple computational models such as decision trees.
• No complete languages known.

Peter Sarnak’s Lecture

Found in Jack Edmonds’ Yard

8

• Hard Language: Fully specified decision problems not in 𝐏.

• 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏:	Languages for which there exists an efficient 𝐍𝐏 verifier for both
membership and non-membership.

• Candidate hard languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 are highly structured and few.
• Languages related to factoring and discrete log.
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log.

• Note: This is not the case for promise problems.
• Maybe: Unclear how hard 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 actually is?

• Most current candidates broken by quantum algorithms.
• 𝐏 = 	𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 holds for simple computational models such as decision trees.
• No complete languages known.

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏

9

• Hard Language: Fully specified decision problems not in 𝐏.

• 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏:	Languages for which there exists an efficient 𝐍𝐏 verifier for both
membership and non-membership.

• Candidate hard languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 are highly structured and few.
• Languages related to factoring and discrete log.
• Stochastic Games [Condon92]
• Construction from OWPs [Brassard79, BennettGill81]

• Only known constructions of OWPs rely on factoring or discrete log.

• Note: This is not the case for promise problems.
• Maybe: Unclear how hard 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 actually is?

• Most current candidates broken by quantum algorithms.
• 𝐏 = 	𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 holds for simple computational models such as decision trees.
• No complete languages known.

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏

10

Can we build a hard language in
NP ∩ coNP from unstructured assumptions?

Which assumptions represent unstructured
hardness?

Random
Oracles

Unstructured Assumptions: assumptions that follow from random oracles.

11

Which assumptions represent unstructured
hardness?

Random
Oracles

Unstructured Assumptions: assumptions that follow from random oracles.

Private Key Encryption (Unstructured) vs Public Key Encryption (Structure)
[Formalized by Impagliazzo and Rudich]

12

Which assumptions represent unstructured
hardness?

Unstructured Assumptions: assumptions that follow from random oracles.

Injective OWFs
(Slightly

Expanding)
OWPs Injective OWFs

(Length Tripling)

13

Which assumptions represent unstructured
hardness?

Unstructured Assumptions: assumptions that follow from random oracles.

Injective OWFs
(Slightly

Expanding)
OWPs Injective OWFs

(Length Tripling)

𝑂: 0,1 ! → 0,1 ! 𝑂: 0,1 ! → 0,1 !"#(%) 𝑂: 0,1 ! → 0,1 '!

14

Which assumptions represent unstructured
hardness?

Unstructured Assumptions: assumptions that follow from random oracles.

Injective OWFs
(Slightly

Expanding)
OWPs Injective OWFs

(Length Tripling)

Structured Unstructured

15

𝑂: 0,1 ! → 0,1 ! 𝑂: 0,1 ! → 0,1 !"#(%) 𝑂: 0,1 ! → 0,1 '!

Which assumptions represent unstructured
hardness?

Random
Oracles

OWPs

OWFs

Injective
OWFs

Bilinear
Maps

Factoring LWE

Collision-
Resistant Hash

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Random oracles are one-way
and collision-resistant.

PKE OT

16

Which assumptions represent unstructured
hardness?

Random
Oracles

OWFs

Injective
OWFs

Collision-
Resistant Hash

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Length-tripling random
oracle is injective w.h.p.

OWPs

Bilinear
Maps

Factoring LWE

PKE OT

17

OWPs

Which assumptions represent unstructured
hardness?

Random
Oracles

OWFs

Injective
OWFs

Collision-
Resistant Hash

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Injective OWFs
imply 𝑈𝑃 ⊆ 𝑅𝑃

Bilinear
Maps

Factoring LWE

PKE OT

18

Which assumptions represent unstructured
hardness?

Random
Oracles

OWFs

Injective
OWFs

Collision-
Resistant Hash

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Don’t know how to build the rest
heuristically from random oracles.

OWPs

Bilinear
Maps

Factoring LWE

PKE OT

19

Which assumptions represent unstructured
hardness?

Random
Oracles

OWFs

Injective
OWFs

Collision-
Resistant Hash

Functions 𝑈𝑃 ⊆ 𝑅𝑃

Unstructured Assumptions: assumptions that follow from random oracles.

Structured
Unstructured

OWPs

Bilinear
Maps

Factoring LWE

PKE OT

20

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
from Unstructured Assumptions

• No known random oracle separation of 𝐏 and 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• [BennettGill81] Open problem since 1981.
• [Tardos89] details some difficulties with this approach.

• No black-box constructions of hard languages in NP ∩ coNP from
• OWFs [BlumImpagliazzo87, Rudich88]
• Injective OWFs and iO [BitanskyDegwekarVaikuntanathan21]

• Implies no black-box constructions from many cryptographic primitives since
iO + OWFs can be used to build a lot of crypto.

21

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
from Unstructured Assumptions

• No known random oracle separation of 𝐏 and 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• [BennettGill81] Open problem since 1981.
• [Tardos89] details some difficulties with this approach.

• No black-box constructions of hard languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 from
• OWFs [BlumImpagliazzo87, Rudich88,	KahnSaksSmyth00]
• Injective OWFs and Indistinguishability Obfuscation (iO)

[BitanskyDegwekarVaikuntanathan21]
• Implies no black-box constructions from many cryptographic primitives since

iO + OWFs can be used to build a lot of crypto.

22

• No known random oracle separation of 𝐏 and 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
• [BennettGill81] Open problem since 1981.
• [Tardos89] details some difficulties with this approach.

• No black-box constructions of hard languages in 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 from
• OWFs [BlumImpagliazzo87, Rudich88,	KahnSaksSmyth00]
• Injective OWFs and Indistinguishability Obfuscation (iO)

[BitanskyDegwekarVaikuntanathan21]
• Implies no black-box constructions from many cryptographic primitives since

iO + OWFs can be used to build a lot of crypto.

Hardness of 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏
from Unstructured Assumptions

Can we build a hard language in
𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 from random oracles?

23

Random Oracle Separations of Complexity Classes

24

Random Oracle Separations of Complexity Classes
• A lot of exciting work in complexity theory

• [BennettGill81] P, NP, and coNP separated by random oracles.
• [RossmanServedioTan15] Polynomial hierarchy is infinite relative to a random oracle.
• [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random

oracle.

• Random Oracle Hypothesis [BG81]: random oracle separations of complexity
classes imply a non-random-oracle separation of the same classes
• [CCGHHRR92] False for IP and PSPACE
• Plausibly true for simpler complexity classes.
• Can heuristically construct a concrete language by instantiating the random oracle with a

cryptographic hash function.

25

Random Oracle Separations of Complexity Classes
• A lot of exciting work in complexity theory

• [BennettGill81] P, NP, and coNP separated by random oracles.
• [RossmanServedioTan15] Polynomial hierarchy is infinite relative to a random oracle.
• [YamakawaZhandry22] Separation of search-BQP and search-BPP relative to a random

oracle.

• Random Oracle Hypothesis [BG81]: random oracle separations of complexity
classes imply a non-random-oracle separation of the same classes
• [CCGHHRR92] False for IP and PSPACE
• Plausibly true for feasible complexity classes.

• Similar hypothesis in cryptography:
• Can heuristically construct a concrete language by instantiating the random oracle with a

cryptographic hash function.

26

If there exists injective OWFs, then with probability 1 over the choice of a
random oracle 𝑂, 𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

27

If there exists injective OWFs, then with probability 1 over the choice of a
random oracle 𝑂, 𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

Our proof is constructive!

Polytime
Algorithm

Cryptographic
Hash Function H

Injective OWF

Candidate language in
(𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃)\P

28

If there exists injective OWFs, then with probability 1 over the choice of a
random oracle 𝑂, 𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

Suffices to assume 𝑈𝑃 ⊆ 𝑅𝑃 which is
implied by injective OWFs.

29

If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂,
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

30

If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂,
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

Main New Ingredient:
A Non-Interactive Zero Knowledge (NIZK) proof system in the random

oracle model!
(Note: Fiat-Shamir only gives NIZK arguments.)

31

If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂,
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the
random oracle model.

NIZK Proofs in Random Oracle Model

32

If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂,
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the
random oracle model.

NIZK Proofs in Random Oracle Model

Can also build NIZK Proofs in URS model from a concrete
cryptographic object we call

δ-Dense-PRHFs.
33

δ-Dense-Pseudorandom-Hash-Functions

• Functions 𝐻: 0,1 ' → 0,1 (satisfying three properties:
1. Pseudorandom Output:
• Let 𝑋 be uniform over {0,1}n and 𝑈(be uniform over {0,1}m.
• Then 𝐻 𝑋 ≈) 𝑈(

2. δ-Dense: The image is δ-Dense in the codomain.
• Constant 𝛿 ∈ 0,1 which is “efficiently approximatable”.
• 𝑃𝑟 𝑈(∈ 𝐼𝑚𝑎𝑔𝑒(𝐻) = 	𝛿 ± 𝑛𝑒𝑔𝑙(𝑛)

3. Preimage Pseudorandomness:
• Let 𝑌 be uniform over 𝐼𝑚𝑎𝑔𝑒 𝐻 and let 𝐻*+(𝑦) output a random

preimage of 𝑦.
• Then (𝑋, 𝐻 𝑋) ≈) (𝐻*+(𝑌), 𝑌)

34

δ-Dense-Pseudorandom-Hash-Functions

• Functions 𝐻: 0,1 ' → 0,1 (satisfying three properties:
1. Pseudorandom Output:
• Let 𝑋 be uniform over {0,1}n and 𝑈(be uniform over {0,1}m.
• Then 𝐻 𝑋 ≈) 𝑈(

2. δ-Dense: The image is δ-Dense in the codomain.
• Constant 𝛿 ∈ 0,1 which is “efficiently approximable”.
• 𝑃𝑟 𝑈(∈ 𝐼𝑚𝑎𝑔𝑒(𝐻) = 	𝛿 ± 𝑛𝑒𝑔𝑙(𝑛)

3. Preimage Pseudorandomness:
• Let 𝑌 be uniform over 𝐼𝑚𝑎𝑔𝑒 𝐻 and let 𝐻*+(𝑦) output a random

preimage of 𝑦.
• Then (𝑋, 𝐻 𝑋) ≈) (𝐻*+(𝑌), 𝑌)

35

δ-Dense-Pseudorandom-Hash-Functions

• Functions 𝐻: 0,1 ' → 0,1 (satisfying three properties:
1. Pseudorandom Output:
• Let 𝑋 be uniform over {0,1}n and 𝑈(be uniform over {0,1}m.
• Then 𝐻 𝑋 ≈) 𝑈(

2. δ-Dense: The image is δ-Dense in the codomain.
• Constant 𝛿 ∈ 0,1 which is “efficiently approximable”.
• 𝑃𝑟 𝑈(∈ 𝐼𝑚𝑎𝑔𝑒(𝐻) = 	𝛿 ± 𝑛𝑒𝑔𝑙(𝑛)

3. Preimage Pseudorandomness:
• Let 𝑌 be uniform over 𝐼𝑚𝑎𝑔𝑒 𝐻 and let 𝐻*+(𝑦) output a random

preimage of 𝑦.
• Then (𝑋, 𝐻 𝑋) ≈) (𝐻*+(𝑌), 𝑌)

36

If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂,
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the
random oracle model.

NIZK Proofs in Random Oracle Model

Assuming there exists a δ-Dense-PRHF,
there exists an (unbounded-prover) NIZK proof system for NP in the URS

model.

NIZK Proofs in URS model from δ-Dense-PRHFs

37

If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂,
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the
random oracle model.

NIZK Proofs in Random Oracle Model

Assuming there exists a δ-Dense-PRHF,
there exists an (unbounded-prover) NIZK proof system for NP in the URS

model.

NIZK Proofs in URS model from δ-Dense-PRHFs

• Implied by Random Oracle
• No known instantiation from other unstructured assumptions

38

NIZK Proofs for NP in URS Model [BFM88]
• Goal: Prover P is trying to prove to a verifier V that 𝑥 ∈ 𝐿.

• Setting:
• Unbounded prover P
• Computationally bounded (poly-sized) verifier V
• URS model : P and V share uniformly random string

• Properties
• Completeness: If all players are honest and 𝑥 ∈ 𝐿, the verifier accepts.
• Soundness: If 𝑥 ∉ 𝐿, no unbounded cheating prover should be able to

convince an honest verifier to accept.
• Zero Knowledge: Security against dishonest poly-sized verifiers.
• There exists a PPT Sim such that ∀𝑥 ∈ 𝐿,	Sim(x) ≈ (urs, P(urs, x))

39

NIZK Proofs for NP in Random Oracle Model
• Goal: Prover P is trying to prove to a verifier V that 𝑥 ∈ 𝐿.

• Setting:
• Unbounded prover P
• Computationally bounded (poly-sized) verifier V
• Random Oracle model: P and V have query access to a random oracle.

• Properties
• Completeness: If all players are honest and 𝑥 ∈ 𝐿, the verifier accepts.
• Soundness: If 𝑥 ∉ 𝐿, no unbounded cheating prover should be able to

convince an honest verifier to accept.
• Zero Knowledge: Security against dishonest verifiers that can make

polynomially many queries to the random oracle.
• There exists a PPT Sim = (SimO, SimP) such that ∀𝑥 ∈ 𝐿, “(SimO, SimP(x))

≈ (O, PO(x))”
40

Previous Work on NIZKs

Proofs
(secure against unbounded

prover)

Arguments
(secure against PPT prover)

URS
(uniform

random string)

• OWPs [FLS90, BY96, CL18]
• DLIN on bilinear groups [GOS06]
• iO and OWFs [BP15]

• Random oracle [FS86]
• Many assumptions

SRS
(structured

random string)

• OWFs [Ps05] (unbounded prover)
• Lattices [CCH+19, PS19]
• Many assumptions

• Many assumptions

41

Proofs
(secure against unbounded

prover)

Arguments
(secure against PPT prover)

URS
(uniform

random string)

• OWPs [FLS90, BY96, CL18]
• DLIN on bilinear groups [GOS06]
• iO and OWFs [BP15]

• Random oracle [FS86]
• Many assumptions

SRS
(structured

random string)

• OWFs [Ps05] (unbounded prover)
• Lattices [CCH+19, PS19]
• Many assumptions

• Many assumptions

Previous Work on NIZKs

Structured Hardness
(and not post-quantum,

except maybe iO)

42

Previous Work on NIZKs

Proofs
(secure against unbounded

prover)

Arguments
(secure against PPT prover)

URS
(uniform

random string)

• OWPs [FLS90, BY96, CL18]
• DLIN on bilinear groups [GOS06]
• iO and OWFs [BP15]
• Random oracle or δ-Dense-PRHF
 [Our Work]

• Random oracle [FS86]
• Many assumptions

SRS
(structured

random string)

• OWFs [Ps05] (unbounded prover)
• Lattices [CCH+19, PS19]
• Many assumptions

• Many assumptions

Unstructured
Hardness

43

If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂,
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the
random oracle model.

NIZK Proofs in Random Oracle Model

Assuming there exists a δ-Dense-PRHF,
there exists an (unbounded-prover) NIZK proof system for NP in the URS

model.

NIZK Proofs in URS model from δ-Dense-PRHFs

44

Separating
	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

SeparaKng	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!
• Ingredients
• Injective OWF: f
• NIZK Proof (𝑃(.), 𝑉(.), 𝑆𝑖𝑚)	in Random Oracle model for the language
• 𝐿/ = 𝑦: ∃𝑥, 𝑓 𝑥 = 𝑦 : “𝑦 has a preimage”

46

SeparaKng	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!
• Ingredients
• Injective OWF: f
• NIZK Proof (𝑃(.), 𝑉(.), 𝑆𝑖𝑚)	in Random Oracle model for the language
• 𝐿/ = 𝑦: ∃𝑥, 𝑓 𝑥 = 𝑦 : “𝑦 has a preimage”

• 𝐿 = { 𝑦, 𝑖 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 } Promise : 𝑦 always has a preimage

47

SeparaKng	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!
• Ingredients
• Injective OWF: f
• NIZK Proof (𝑃(.), 𝑉(.), 𝑆𝑖𝑚)	in Random Oracle model for the language
• 𝐿/ = 𝑦: ∃𝑥, 𝑓 𝑥 = 𝑦 : “𝑦 has a preimage”

• 𝐿 = { 𝑦, 𝑖 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 } Promise : 𝑦 always has a preimage

• Our Language (with random oracle O)
• 𝐿1 = { 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 ∧ 𝑉1 𝑦, 𝜋 = 1}

 “y has a preimage x where xi = 1” and
 “𝜋 is a valid proof that y has a preimage”

48

SeparaKng	𝑃!and 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!
• Ingredients
• Injective OWF: f
• NIZK Proof (𝑃(.), 𝑉(.), 𝑆𝑖𝑚)	in Random Oracle model for the language
• 𝐿/ = 𝑦: ∃𝑥, 𝑓 𝑥 = 𝑦 : “𝑦 has a preimage”

• 𝐿 = { 𝑦, 𝑖 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 } Promise : 𝑦 always has a preimage

• Our Language (with random oracle O)
• 𝐿1 = { 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥0 = 1 ∧ 𝑉1 𝑦, 𝜋 = 1}

 “y has a preimage x where xi = 1” and
 “𝜋 is a valid proof that y has a preimage”

Similar proof also works assuming a language
𝐿′′ ∈ 𝑈𝑃\RP
in which case

𝐿/ = 𝑦: ∃𝑤, 𝑦, 𝑤 ∈ 	𝑅2//
𝐿1 = { 𝑦, 𝑖, 𝜋 : ∃𝑤, 𝑦, 𝑤 ∈ 	𝑅2// ∧ 𝑤0 = 1 ∧ 𝑉1 𝑦, 𝜋 = 1}

49

𝐿! = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥" = 1 ∧ 𝑉! 𝑦, 𝜋 = 1

𝐿! ∈ 𝑁𝑃!

50

𝐿! = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥" = 1 ∧ 𝑉! 𝑦, 𝜋 = 1

𝐿! ∈ 𝑁𝑃!

𝐷%&' (𝑦, 𝑖, 𝜋), 𝑤
1. Check if 𝑉' 𝑦, 𝜋 verifies. If not, then 𝑦, 𝑖, 𝜋 ∉ 𝐿' . Reject.
2. Check that for witness w, 𝑓 𝑤 = 𝑦. If not, reject.
3. Accept if 𝑤(= 1.

The correctness of 𝐷!"# (𝑦, 𝑖, 𝜋), 𝑤 follows from definition of 𝐿#.

51

!𝐿6 = 𝑦, 𝑖, 𝜋 : ∄	𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∨ (𝑉6 𝑦, 𝜋 = 0)

If NIZK perfectly sound*, 𝑃𝑟![𝐿! ∈ 𝑐𝑜𝑁𝑃!]=1

52

𝐷)*%&' (𝑦, 𝑖, 𝜋), 𝑤
1. Check if 𝑉' 𝑦, 𝜋 verifies. If not, then 𝑦, 𝑖, 𝜋 ∈ 0𝐿' . Accept.

• Otherwise, soundness of NIZK proof ensures ∃𝑥, 𝑓 𝑥 = 𝑦.
• This x is unique since f is injective!
• Expect witness w to be this unique x.

2. Check that for witness w, 𝑓 𝑤 = 𝑦. If not, reject.
3. Accept if 𝑤(= 0.

!𝐿6 = 𝑦, 𝑖, 𝜋 : ∄	𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∨ (𝑉6 𝑦, 𝜋 = 0)

If NIZK perfectly sound*, 𝑃𝑟![𝐿! ∈ 𝑐𝑜𝑁𝑃!]=1

53

𝐿6 = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∧ 𝑉6 𝑦, 𝜋 = 1

If NIZK is ZK, 𝑃𝑟! 𝐿! ∉ 𝑃! = 1

54

𝐿6 = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∧ 𝑉6 𝑦, 𝜋 = 1

Assume 𝑃𝑟1 𝐿1 ∈ 𝑃1 > 0.

Theorem from [BG81] implies there exists a polytime Turing Machine 𝐷(3) which decides
𝐿(3) with probability 1 over the choice of 𝑂.

If NIZK is ZK, 𝑃𝑟! 𝐿! ∉ 𝑃! = 1

55

𝐿6 = 𝑦, 𝑖, 𝜋 : ∃𝑥, 𝑓 𝑥 = 𝑦 ∧ 𝑥7 = 1 ∧ 𝑉6 𝑦, 𝜋 = 1

Assume 𝑃𝑟1 𝐿1 ∈ 𝑃1 > 0.

Theorem from [BG81] implies there exists a polytime Turing Machine 𝐷(3) which decides
𝐿(3) with probability 1 over the choice of 𝑂.

Then, w.h.p we could invert OWF f!
f-Inverter 𝑦 :
1. For each i:

a. Use NIZK simulator to simulate a proof 𝜋 that 𝑦 has a preimage.
b. Set xi = 𝐷$%&# 𝑦, 𝑖, 𝜋 (using NIZK simulator to simulate random oracle queries).

I. If 𝜋 was a real proof, then D would output correct xi.
II. Zero knowledge ensures that D acts similarly on simulated proof!

2. Output x.

If NIZK is ZK, 𝑃𝑟! 𝐿! ∉ 𝑃! = 1

56

Constructing NIZK Proofs in
Random Oracle Model

NIZK Proofs for NP in the Random Oracle Model
• Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.

• Goal: Replace OWPs with random oracle.
• (Trivial to replace URS with random oracle.)

58

NIZK Proofs for NP in the Random Oracle Model
• Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.

• Goal: Replace OWPs with random oracle.
• (Trivial to replace URS with random oracle.)

[FLS90] Proof Overview
1. Build NIZK Proofs for NP in

Hidden Bits Model (HB).

2. Instantiate HB with URS and
OWP.

59

NIZK Proofs for NP in the Random Oracle Model
• Starting Point: [FLS90] NIZK Proof for NP from OWPs in URS model.

• Goal: Replace OWPs with random oracle.
• (Trivial to replace URS with random oracle.)

[FLS90] Proof Overview
1. Build NIZK Proofs for NP in

Hidden Bits Model (HB).

2. Instantiate HB with URS and
OWP.

Our Proof Overview
1. Build NIZK Proofs for NP in

Z-Tamperable Hidden Bits
Model (ZHB).

2. Instantiate ZHB with random
oracle.

60

NIZK Proofs in Hidden Bits Model

r1 r2 r3 r4 r5 r6 … rn

Uniformly random
“hidden” bits

r = r1r2…rn.
Goal: Prove z ∈ 𝐿

61

NIZK Proofs in Hidden Bits Model

r1 r2 r3 r4 r5 r6 … rn

Uniformly random
“hidden” bits

r = r1r2…rn.

1 2 n

Goal: Prove z ∈ 𝐿

P(z, (, , … ,)) V(z)

Prover can view
all the hidden bits.

Verifier can’t view
the hidden bits.

62

NIZK Proofs in Hidden Bits Model

r1 r2 r3 r4 r5 r6 … rn

Uniformly random
“hidden” bits

r = r1r2…rn.

1 2 n

Goal: Prove z ∈ 𝐿

P(z, (, , … ,)) V(z)

Prover can view
all the hidden bits.

π, { , } 2 5

P sends across proof π
and openings to

indices of their choice.

63

r1 r2 r3 r4 r5 r6 … rn

Uniformly random
“hidden” bits

r = r1r2…rn.

1 2 n

Goal: Prove z ∈ 𝐿

P(z, (, , … ,)) V(z)

Prover can view
all the hidden bits.

π, { , } 2 5

P sends across proof π
and openings to

indices of their choice.

V can view only
the hidden bits

chosen by P.
2

5

NIZK Proofs in Hidden Bits Model

64

r1 r2 r3 r4 r5 r6 … rn

Uniformly random
“hidden” bits

r = r1r2…rn.

1 2 n

Goal: Prove z ∈ 𝐿

P(z, (, , … ,)) V(z)

Prover can view
all the hidden bits.

π, { , } 2 5

P sends across proof π
and openings to

indices of their choice.

V can view only
the hidden bits

chosen by P.
2

5

Accept/Reject

NIZK Proofs in Hidden Bits Model

65

y1 y2 y3 y4 y5 y6 … yn

URS

Hidden Bits

?

Instantiating the HB model with URS!

r1 r2 r3 r4 r5 r6 … rn

66

y1 y2 y3 y4 y5 y6 … yn

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

x1 x2 x3 x4 x5 x6 … xn

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

ri = HCB(xi)

Instantiating the HB model with URS!

OWP O

67

y1 y2 y3 y4 y5 y6 … yn
OWP O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

x1 x2 x3 x4 x5 x6 … xn

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

ri = HCB(xi)

O hard to invert:
V can’t learn ri
from just yi.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi) and compute ri = HCB(xi).

= xi

Instantiating the HB model with URS!

68

y1 y2 y3 y4 y5 y6 … yn
OWP O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

x1 x2 x3 x4 x5 x6 … xn

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

ri = HCB(xi)

O hard to invert:
V can’t learn ri
from just yi.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi) and compute ri = HCB(xi).

= xi

Instantiating the HB model with URS!

OWPs are bijective

69

Instantiating the HB model with Random Oracle and URS?

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

r1 ? r3 r4 ? r6 … rn

Hidden Bits

x1 - x3 x4 - x6 … xn

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

ri = HCB(xi)

Problem: yi might not have
a preimage.

Lose completeness!
70

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

Hidden Bits

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

Problem: yi might not have
a preimage.

Lose completeness!

Problem: yi might have multiple preimages.
P can pick whichever he wants so ri not uniformly

random. Lose soundness!

x1 - x31, x32 x4 - x61, x62, x63 … xn

r1 ? r31 or r32 r4 ? r61 or r62 or r63 … rnri = HCB(xi)

Instantiating the HB model with Random Oracle and URS?

71

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

Hidden Bits

O-1

Hardcore Bit Predicate (HCB)

O(xi) = yi

Problem: yi might not have
a preimage.

Lose completeness!

Problem: yi might have multiple preimages.
P can pick whichever he wants so ri not uniformly

random. Lose soundness!

x1 - x31, x32 x4 - x61, x62, x63 … xn

r1 ? r31 or r32 r4 ? r61 or r62 or r63 … rnri = HCB(xi)

New Idea:
Set ri = 1 dependent on whether

or not yi has a preimage.

Instantiating the HB model with Random Oracle and URS?

72

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

Instantiating the HB model with Random Oracle and URS?

73

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily
determine if yi has a
preimage or not.

Instantiating the HB model with Random Oracle and URS?

74

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily
determine if yi has a
preimage or not.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi).

= (preimage xi) or (“has no preimage”)

Instantiating the HB model with Random Oracle and URS?

75

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily
determine if yi has a
preimage or not.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi).

= (preimage xi) or (“has no preimage”)

yi has no preimage:
Prover must set ri =1

Instantiating the HB model with Random Oracle and URS?

76

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily
determine if yi has a
preimage or not.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi).

= (preimage xi) or (“has no preimage”)

Problem: P can claim yi
has no preimage even

when it does!

Instantiating the HB model with Random Oracle and URS?

77

y1 y2 y3 y4 y5 y6 … yn

Random
Oracle O

URS

r1 r2 r3 r4 r5 r6 … rn

Hidden Bits

𝑟0 = `0	 𝑖𝑓	∃𝑥0, 𝑂 𝑥0 = 𝑦0
1	 𝑒𝑙𝑠𝑒	

V can’t easily
determine if yi has a
preimage or not.

i

• (Unbounded) P can compute xi by brute force.
• V can check that yi = O(xi).

= (preimage xi) or (“has no preimage”)

Problem: P can claim yi
has no preimage even

when it does!

Solution:
Define new model that captures this

behavior.

Instantiating the HB model with Random Oracle and URS?

78

• Same as Hidden Bits model except that P can lie about ri if ri = 0.
• Captures ability of dishonest P to lie by saying “has no preimage” when there is

actually a preimage.
• Honest P never lies about ri.

NIZK Proofs in Z-Tamperable Hidden Bits Model

b𝑟0 = 0Original
Hidden

Bits

Hidden Bits
Received

by V

b𝑟0 = 1

𝑟0 = 0

𝑟0 = 1

(Similar to a Z-channel.)

P can lie!

79

• Observation: P can’t lie too much.
• V can run statistical tests on distribution of r to see if there are too many 1’s.

NIZK Proofs in Z-Tamperable Hidden Bits Model

80

• Observation: P can’t lie too much.
• V can run statistical tests on distribution of r to see if there are too many 1’s.

• Key Idea: Add careful statistical tests to construction of NIZK proofs in the
(regular) Hidden Bits model [FLS90].

• Step 1: Carefully change parameters to make bad behavior more detectable.
• Step 2: This requires statistical tests.
• Step 3: Our analysis shows that any significant amount of cheating using the

ZHB model will be caught with high probability.

NIZK Proofs in Z-Tamperable Hidden Bits Model

81

Assume: Hidden bit string r
represents adjacency
matrix of cycle graph H.

Warmup: Prove that G is Hamiltonian.

82

1. P finds permutation π
such that π(CG) = H
where CG is
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r
represents adjacency
matrix of cycle graph H.

83

1. P finds permutation π
such that π(CG) = H
where CG is
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r
represents adjacency
matrix of cycle graph H.

2. Show that H is a
subgraph of π(G) by
opening non-edges of
π(G) in H to 0.

84

1. P finds permutation π
such that π(CG) = H
where CG is
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r
represents adjacency
matrix of cycle graph H.

2. Show that H is a
subgraph of π(G) by
opening non-edges of
π(G) in H to 0.

• P sends proof: (π, openings)
• V checks that all non-edges

of π(G) in H opened to 0.

85

1. P finds permutation π
such that π(CG) = H
where CG is
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r
represents adjacency
matrix of cycle graph H.

2. Show that H is a
subgraph of π(G) by
opening non-edges of
π(G) in H to 0.

Completeness: Always exists a
permutation that works if G is

Hamiltonian.

86

1. P finds permutation π
such that π(CG) = H
where CG is
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r
represents adjacency
matrix of cycle graph H.

2. Show that H is a
subgraph of π(G) by
opening non-edges of
π(G) in H to 0.

Soundness: V knows that every
non-edge in G corresponds to a

non-edge in H => every edge in H
corresponds to an edge in G => G
must have a Hamiltonian cycle.

87

1. P finds permutation π
such that π(CG) = H
where CG is
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r
represents adjacency
matrix of cycle graph H.

2. Show that H is a
subgraph of π(G) by
opening non-edges of
π(G) in H to 0.

Soundness: V knows that every
non-edge in G corresponds to a

non-edge in H => every edge in H
corresponds to an edge in G => G
must have a Hamiltonian cycle.

Also works in Z-Tamperable
Hidden Bits model since

flipping 0’s to 1’s only adds
edges to H!

88

1. P finds permutation π
such that π(CG) = H
where CG is
Hamiltonian cycle of G.

Warmup: Prove that G is Hamiltonian.

Assume: Hidden bit string r
represents adjacency
matrix of cycle graph H.

2. Show that H is a
subgraph of π(G) by
opening non-edges of
π(G) in H to 0.

Zero Knowledge: Pick a random
permutation π and “open” all

non-edges of π(G) to 0.

89

• Warmup: Assume hidden bit string r is a random cycle graph.
• Works in Z-Tamperable Hidden Bits Model!

[FLS90] NIZK Proofs in Hidden Bits Model

90

• Warmup: Assume hidden bit string r is a random cycle graph.
• Works in Z-Tamperable Hidden Bits Model!

• What if r is not a cycle?
• Random 𝑛×𝑛 graph unlikely to be a cycle.
• [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.

[FLS90] NIZK Proofs in Hidden Bits Model

91

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

92

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

93

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.
94

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Soundness: Holds as long as
at least one M(i) is Good. (P

must prove S(i) is a subgraph
of π(G).)

[FLS90]: Overwhelming
probability with correct

parameters.

95

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.
96

Soundness: Holds as long as
at least one M(i) is Good. (P

must prove S(i) is a subgraph
of π(G).)

[FLS90]: Overwhelming
probability with correct

parameters.

What about in the
Z-Tamperable Hidden

Bits Model?

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Recall: P can add ‘1’s.

97

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Recall: P can add ‘1’s.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

98

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Recall: P can add ‘1’s.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

Problem: P can pretend a
Bad M(i) is Good as long as
it contains a subgraph of

π(G).
99

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Recall: P can add ‘1’s
but cannot remove

them.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

Problem: P can pretend a
Bad M(i) is Good as long as
it contains a subgraph of

π(G).

P can only add ‘1’s:
All such M(i) have at

least n+1 ‘1’s.

100

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Recall: P can add ‘1’s
but cannot remove

them.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

Problem: P can pretend a
Bad M(i) is Good as long as
it contains a subgraph of

π(G).

P can only add ‘1’s:
All such M(i) have at

least n+1 ‘1’s.

‘1’s of M(i) must be
contained in an 𝑛×𝑛

submatrix.
101

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

Problem: P can pretend a
Bad M(i) is Good as long as
it contains a subgraph of

π(G).

P can only add ‘1’s:
All such M(i) have at

least n+1 ‘1’s.

‘1’s of M(i) must be
contained in an 𝑛×𝑛

submatrix.

Key Insight: To cheat, P must convert every Good M(i) to
Bad M(i)

102

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

Problem: P can pretend a
Bad M(i) is Good as long as
it contains a subgraph of

π(G).

P can only add ‘1’s:
All such M(i) have at

least n+1 ‘1’s.

‘1’s of M(i) must be
contained in an 𝑛×𝑛

submatrix.

Key Insight: If c is large, matrices become very sparse
=> Most matrices with at least n+1 ‘1’s, do not fit all

these ‘1’s into an 𝑛×𝑛 submatrix!

Key Insight: To cheat, P must convert every Good M(i) to
Bad M(i)

103

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

Problem: P can pretend a
Bad M(i) is Good as long as
it contains a subgraph of

π(G).

P can only add ‘1’s:
All such M(i) have at

least n+1 ‘1’s.

‘1’s of M(i) must be
contained in an 𝑛×𝑛

submatrix.

Solution: V checks for expected number of matrices with
at least n+1 ‘1’s.

104

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

Problem: P can pretend a
Bad M(i) is Good as long as
it contains a subgraph of

π(G).

Solution: V checks for expected number of matrices with
at least n+1 ‘1’s.

Cheating P must add all
Good M(i) to count.

Not enough Bad
matrices that fit in an
𝑛×𝑛 submatrix to

make up for it.105

[FLS90] Sampling Cycle Graphs
Sample nc x nc matrices M(i)
such that each element of

M(i) is 1 with probability
1/n2c-1.

Case 1: Good M(i)

• M(i) contains a submatrix
S(i) which is the adjacency
matrix of a cycle graph on
n nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Problem: P can turn M(i)
from Good to Bad by

adding ‘1’s.

Problem: P can pretend a
Bad M(i) is Good as long as
it contains a subgraph of

π(G).

Solution: V checks for expected number of matrices with
at least n+1 ‘1’s.

Soundness in Z-
Tamperable Hidden

Bits Model!

106

• Warmup: Assume hidden bit string r is a random cycle graph.
• Works in Z-Tamperable Hidden Bits Model!

• What if r is not a cycle?
• Random 𝑛×𝑛 graph unlikely to be a cycle.
• [FLS90] Use r to sample graphs such that w.h.p. at least one is a cycle graph.
• Our Work: Increase sparsity of matrices and add statistical checks

to ensure that P must use at least one cycle graph.

NIZK Proofs in Z-Tamperable Hidden Bits Model

107

If 𝑈𝑃 ⊆ 𝑅𝑃, then with probability 1 over the choice of a random oracle 𝑂,
𝑃! ≠ 𝑁𝑃! ∩ 𝑐𝑜𝑁𝑃!

Our Results
Main Theorem

There exists an (unbounded-prover) NIZK proof system for NP in the
random oracle model.

NIZK Proofs in Random Oracle Model

Assuming there exists a δ-Dense-PRHF,
there exists an (unbounded-prover) NIZK proof system for NP in the URS

model.

NIZK Proofs in URS model from δ-Dense-PRHFs

108

Future Directions

1. Get an unconditional random oracle separation of 𝑃 and 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃.

2. Extend our techniques to get more separation results.

3. Instantiate a δ-Dense-PRHF from standard unstructured assumptions.

4. Build efficient-prover NIZK proofs from random oracles.

109

THANK YOU!!!

APPENDIX

Pr[M is Good]
Sample nc x nc matrices M(i)

such that each element of M(i)
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Set c = 4.

Pr[M is Good]
Sample nc x nc matrices M(i)

such that each element of M(i)
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

Set c = 4.

Pr[M is Good]
Sample nc x nc matrices M(i)

such that each element of M(i)
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

By	Chebyshev’s	Inequality,
Pr #1(𝑠	 ∈ 𝑛 − 2𝑛, 𝑛 + 2𝑛 ≥ %

)

Therefore,

Pr 𝑀	ℎ𝑎𝑠	𝑛	1(𝑠 ≥
1

2 2𝑛
V

*+!	-)!

!")!

Pr[𝑀	ℎ𝑎𝑠	𝑖	1(𝑠] ≥
1

4 2𝑛

Set c = 4.

Pr[M is Good]
Sample nc x nc matrices M(i)

such that each element of M(i)
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

By	Chebyshev’s	Inequality,
Pr #1(𝑠	 ∈ 𝑛 − 2𝑛, 𝑛 + 2𝑛 ≥ %

)

Therefore,

Pr 𝑀	ℎ𝑎𝑠	𝑛	1(𝑠 ≥
1

2 2𝑛
V

*+!	-)!

!")!

Pr[𝑀	ℎ𝑎𝑠	𝑖	1(𝑠] ≥
1

4 2𝑛

Pr 1(𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
≥ 1 − 	Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑐𝑜𝑙𝑢𝑚𝑛 − Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑟𝑜𝑤

≥ 1	 − 𝑂
1
𝑛)

Affected by c!

Set c = 4.

Pr[M is Good]
Sample nc x nc matrices M(i)

such that each element of M(i)
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

By	Chebyshev’s	Inequality,
Pr #1(𝑠	 ∈ 𝑛 − 2𝑛, 𝑛 + 2𝑛 ≥ %

)

Therefore,

Pr 𝑀	ℎ𝑎𝑠	𝑛	1(𝑠 ≥
1

2 2𝑛
V

*+!	-)!

!")!

Pr[𝑀	ℎ𝑎𝑠	𝑖	1(𝑠] ≥
1

4 2𝑛

Pr 	𝑛 − 𝑐𝑦𝑐𝑙𝑒	 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛] =
1
𝑛

Pr 1(𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
≥ 1 − 	Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑐𝑜𝑙𝑢𝑚𝑛 − Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑟𝑜𝑤

≥ 1	 − 𝑂
1
𝑛)

Set c = 4.

Pr[M is Good]
Sample nc x nc matrices M(i)

such that each element of M(i)
is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

1. M has exactly n 1’s.

2. These 1’s form a permutation submatrix.

3. The permutation is an n-cycle.

By	Chebyshev’s	Inequality,
Pr #1(𝑠	 ∈ 𝑛 − 2𝑛, 𝑛 + 2𝑛 ≥ %

)

Therefore,

Pr 𝑀	ℎ𝑎𝑠	𝑛	1(𝑠 ≥
1

2 2𝑛
V

*+!	-)!

!")!

Pr[𝑀	ℎ𝑎𝑠	𝑖	1(𝑠] ≥
1

4 2𝑛

Pr 	𝑛 − 𝑐𝑦𝑐𝑙𝑒	 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛] =
1
𝑛

Pr 1(𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
≥ 1 − 	Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑐𝑜𝑙𝑢𝑚𝑛 − Pr 𝑡𝑤𝑜	1(𝑠	𝑖𝑛	𝑠𝑎𝑚𝑒	𝑟𝑜𝑤

≥ 1	 − 𝑂
1
𝑛)

= Ω 9
:4.6

Set c = 4.

Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s]

Sample nc x nc matrices M(i)
such that each element of M(i)

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Set c = 4.

Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s]

Sample nc x nc matrices M(i)
such that each element of M(i)

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Let pn = Pr[M has ≥ n+ 1 1’s]

Idea: Compute probability that a
matrix with n+1 1’s has

1. #1’s ≤ 2n

2. 1’s form a permutation submatrix

Set c = 4.

Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s]

Sample nc x nc matrices M(i)
such that each element of M(i)

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Let pn = Pr[M has ≥ n+ 1 1’s]

Idea: Compute probability that a
matrix with n+1 1’s has

1. #1’s ≤ 2n

2. 1’s form a permutation submatrix

Set c = 4.

P can’t cheat on
these because 1’s

do not fit in an
n x n submatrix!

Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s]

Sample nc x nc matrices M(i)
such that each element of M(i)

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Let pn = Pr[M has ≥ n+ 1 1’s]

Idea: Compute probability that a
matrix with n+1 1’s has

1. #1’s ≤ 2n

2. 1’s form a permutation submatrix

Set c = 4.

By	Chernoff	Bound:
Pr #1'𝑠 ≤ 2𝑛	|	#1'𝑠 > 𝑛 ≥ 1	 − 𝑛𝑒𝑔𝑙(𝑛)/𝑝(

P can’t cheat on
these because 1’s

do not fit in an
n x n submatrix!

Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s]

Sample nc x nc matrices M(i)
such that each element of M(i)

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Let pn = Pr[M has ≥ n+ 1 1’s]

Idea: Compute probability that a
matrix with n+1 1’s has

1. #1’s ≤ 2n

2. 1’s form a permutation submatrix

Set c = 4.

By	Chernoff	Bound:
Pr #1'𝑠 ≤ 2𝑛	|	#1'𝑠 > 𝑛 ≥ 1	 − 𝑛𝑒𝑔𝑙(𝑛)/𝑝(

Similar	to	before:

Pr 1'𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ≥ 1	 − 𝑂
1
𝑛)

P can’t cheat on
these because 1’s

do not fit in an
n x n submatrix!

Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s]

Sample nc x nc matrices M(i)
such that each element of M(i)

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Let pn = Pr[M has ≥ n+ 1 1’s]

Idea: Compute probability that a
matrix with n+1 1’s has

1. #1’s ≤ 2n

2. 1’s form a permutation submatrix

Set c = 4.

By	Chernoff	Bound:
Pr #1'𝑠 ≤ 2𝑛	|	#1'𝑠 > 𝑛 ≥ 1	 − 𝑛𝑒𝑔𝑙(𝑛)/𝑝(

Similar	to	before:

Pr 1'𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ≥ 1	 − 𝑂
1
𝑛)

P can’t cheat on
these because 1’s

do not fit in an
n x n submatrix!

≤ 1 − 𝑂 +
,.

+ 𝑛𝑒𝑔𝑙(𝑛)/𝑝,

Pr[P’ can pretend Bad M is Good, and M has ≥ n+1 1’s]

Sample nc x nc matrices M(i)
such that each element of M(i)

is 1 with probability 1/n2c-1.

Case 2: Bad M(i)

• All other M(i).
• P reveals all of M(i) to prove

it was Bad.

Case 1: Good M(i)

• M(i) contains a submatrix S(i)
which is the adjacency
matrix of a cycle graph on n
nodes, and M(i) is 0
everywhere else.

• P uses submatrix S(i) for
protocol and reveals all
other rows and columns to
be 0.

Let pn = Pr[M has ≥ n+ 1 1’s]

Idea: Compute probability that a
matrix with n+1 1’s has

1. #1’s ≤ 2n

2. 1’s form a permutation submatrix

Set c = 4.

By	Chernoff	Bound:
Pr #1'𝑠 ≤ 2𝑛	|	#1'𝑠 > 𝑛 ≥ 1	 − 𝑛𝑒𝑔𝑙(𝑛)/𝑝(

Similar	to	before:

Pr 1'𝑠	𝑓𝑜𝑟𝑚	𝑎	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ≥ 1	 − 𝑂
1
𝑛)

P can’t cheat on
these because 1’s

do not fit in an
n x n submatrix!

≤ 𝑝! $ 𝑂
"
!#

≤ 1 − 𝑂 +
,.

+ 𝑛𝑒𝑔𝑙(𝑛)/𝑝,

