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Fully Anonymous Secret Sharing—QOverview

An {S, M, U}-fully anonymous secret sharing scheme satisfies
1S, M, U}-anonymity (respectively) and anonymous reconstruction.

We systematically study notions of anonymity.

S-Anonymous & M-Anonymous & U-Anonymous

Additionally, we desire robust reconstruction—reconstruction in the
oresence of multiple dealers, ideally for an unbounded number.

We give info-theoretic upper and lower bounds on share sizes that are nearly
tight. We show that use of cryptography circumvents the lower bounds!




Motivating Various Delinitions of share
Anonymity— 1S, M, Uf-Anonymity




Warm-up: shamir's secret Sharing

dealer with secret s

Q0

n parties
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Warm-up: shamir's secret Sharing

dealer with secret s

For a secret § € I]:q the dealer samples a polynomial
p(x) =s+ax+...+a,_x"forrandomay,...,a,_, € F,

shy = (1, p(1)) € F, X, n parties sh, = (n, p(n)) € F, X,



Warm-up: shamir's secret Sharing

shy = (1, p(1)) € F, X, n parties sh, = (n, p(n)) € F, X,



Warm-up: shamir's secret Sharing
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Warm-up: shamir's secret Sharing

dealer with secret s

Basic guestion: Can a party’s share hide its identity?

.. can we achieve “share anonymity””

Fach party’s
share reveals its

identity!

shy = (1, p(1)) € F, X, n parties sh, = (n, p(n)) € F, X,



Warm-up: Permuted Shamir's Secret sharing
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Warm-up: Permuted Shamir's Secret sharing

dealer with secret s

1. Forasecrets € [Fq, the dealer samples a polynomial
p(x) =s+ax+...+a,_x"forrandomay,...,a,_, € F,

7. Additionally picks a permutation 7 on 71 elements.

7T is hidden. So

oarty’s identity is

shy = (#(1), p(#(1))) n parties sh, = (z(n), p(7(n)))




Warm-up: Permuted Shamir's Secret sharing

dealer with secret s

Perfectly correct, information-theoretic secrecy, with optimal share size = logn
AND satisfies share anonymity (we term as Single-dealer or S-Anonymity)!

7T is hidden. So

oarty’s identity is

shy = (#(1), p(#(1))) n parties sh, = (z(n), p(7(n)))




Warm-up: Permuted Shamir's Secret sharing

dealer with secret s

Does this permutation anonymize all interesting information while
oreserving perfect correctness and optimal share sizes?

7T is hidden. So

oarty’s identity is

shy = (#(1), p(#(1))) n parties sh, = (z(n), p(7(n)))




Dealer Anonymity (M-Anonvmity)

dealer T with secret s, dealer 2 with secret s,

Can an adversary distinguish between the following two distributions?

Distribution 1: A set of unauthorized shares produced by dealer 1.

Distribution 2: A set of some unauthorized shares from dealer 1
and some unauthorized shares from dealer 2.




Dealer Anonymity (M-Anonvmity)

dealer T with secret s, dealer 2 with secret s,

Can an adversary distinguish between the following two distributions?

Distribution 1: A set of unauthorized shares produced by dealer 1.

Distribution 2: A set of some unauthorized shares from dealer 1
and some unauthorized shares from dealer 2.

Previously motivated and studied by [Eldridge-Beck-Green-
Heninger-Jain USENIX 24 ] for abuse-resistant location tracking
(e.g. abuse-resistant Apple Airtags).




Cermuted Shamirs Secret Sharing

L dealer 2 with secret )

Permuted Shamir's Secret Sharing does not satisty M-Anonymity!



Warm-up: Permuted Shamir's Secret sharing

@ dealer 1 with secret s,

Permuted Shamir's Secret Sharing does not satisty M-Anonymity!

b dealer 2 with secret s,

Imagine Adversary selects parties { 1,2} and receives the
following two shares from the challenger:

Sh(ll) = (m;(1), p(z(1)))

1 /n probability that (1) = m,(2). Sh(22) — (772(2)a p(ﬂz(Z)))

This is impossible if these two shares
came from the same dealer!




Warm-up: Random Shamir's Secret sharing

dealer with secret s

For a secret § € I]:q, the dealer samples a polynomial
p(x) =s+ax+...+a,_x"forrandomay,...,a,_, € F,

shy = (8, p($)) n parties



Warm-up: Random Shamir's Secret sharing

dealer with secret s

Additionally satisfies a stronger notion than M-Anonymity:

- any unauthorized set of shares is uniform random (U-Anonymity).

shy = (8, p($)) n parties



Warm-up: Random Shamir's Secret sharing

dealer with secret s

However, correctness error is now 1/¢g.

For negligible correctness error, the share size is now w(log n).

shy = (8, p($)) n parties



Fully Anonymous Secret Sharing—QOverview

An {S, M, U}-fully anonymous secret sharing scheme satisfies
1S, M, U}-anonymity (respectively) and anonymous reconstruction.

We systematically study notions of anonymity.

S-Anonymous & M-Anonymous & U-Anonymous

Additionally, we desire robust reconstruction—reconstruction in the
oresence of multiple dealers, ideally for an unbounded number.




Robust and Anonymous
Reconstruction




But wait... how do we reconstruct with many dealers?

k many dealers

Suppose they all emit Shamir secret shares of their own secrets.

Given a set of shares, how can we recover all secrets corresponding to
authorized sets?
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Given a set of shares, how can we recover all secrets corresponding to
authorized sets?

Fasy solution: Each dealer tags its shares with a dealer ID.

Problem: Violates M-Anonymity.



Reconstruction

k many dealers

Suppose they all emit Shamir secret shares of their own secrets.

Given a set of shares, how can we recover all secrets corresponding to
authorized sets?

Fasy solution: Each dealer tags its shares with a dealer ID.

Problem: Violates M-Anonymity.

|[Eldridge, Beck, Green, Heninger, Jain USENIX 24| gave an error-
correcting code based M-anonymous scheme that handles o
constant number of dealers for the threshold access structure.




ANonymous reconstruction

dealer with secret s

The reconstruction algorithm for Shamir’s secret sharing is
oolynomial interpolation, which does not need to use party
identities, i.e. which parties hold which shares.

This is what we refer to as anonymous reconstruction.

shy = (8, p($)) n parties



ANonymous reconstruction

dealer with secret s

Non-example for anonymous reconstruction: Consider an access
structure over three parties {py, P, Pz} Where the minimal

authorized sets are {{p;}, {P2, Pz} }. Consider the following scheme:

Sh1=S ShzZS@I’ Sh3=7‘



ANonymous reconstruction

dealer with secret s

Non-example for anonymous reconstruction: Consider an access
structure over three parties {py, P, Pz} Where the minimal

authorized sets are {{p;}, {P2, Pz} }. Consider the following scheme:

Sh1=S ShzZS@I’ Sh3=7‘

Fix (not S-Anon):  sh; = (1, ) shy =2, s ®r) shy = (3, r)



Fully Anonymous Secret Sharing—QOverview

An {S, M, U}-fully anonymous secret sharing scheme satisfies
1S, M, Ul-anonymity (respectively) and anonymous reconstruction.

S-Anonymous & M-Anonymous & U-Anonymous

Additionally, we desire robust reconstruction—reconstruction in the
oresence of multiple dealers, ideally for an unbounded number.




Technical Challenge of Bullding FASS
Schemes tor Arpitrary Access
otructures




The Tecnhnica

Most known methods [Ito, Saito, Nishizeki ‘87, Benaloh, Leichter ‘90, Liu, Vaikuntanathan 18, Appelbaum, Beimel,
Farrs, Nir Peter 19] O cONStructing secret sharing schemes for arbitrary access
structures breaks the access structure into ANDs and ORs and uses
recursive composition!

This kills anonymity!

Example: Consider an access structure that is an
AND of two (¢, n/2)- thresholds.




The Technical Chal

Consider an access structure that is

an AND of two (¢, n/2)- thresholds.
s=5Ds

shy = (5, p1(8))  shup = (8, pi(8)  shupi1 = (8, px($))  sh, = (8, py(8))



The Technical Chal

Consider an access structure that is
an AND of two (¢, n/2)- thresholds.

s=5Ds

Consider an
unauthorized set of

t + 1 left parties.

shy = (5, p1(8))  shup = (8, pi(8)  shupi1 = (8, px($))  sh, = (8, py(8))



The Technical Chal

Consider an access structure that is
an AND of two (¢, n/2)- thresholds.

s=5 DS
51 / \ 57
Consider an To be anonymous, any
unauthorized set of such set should
t + 1 left parties. partially reconstruct to
a different value!

shy = (5, p1(8))  shup = (8, pi(8)  shupi1 = (8, px($))  sh, = (8, py(8))



The Technical Chal

Consider an access structure that is

an AND of two (¢, n/2)- thresholds.
s=1s5, D

such set sho
oartially reconst
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unauthorized set of
t + 1 left parties.

sh; = ($, p(§)) sh,p = (8, p1(8))  shppir = (8, pr(9))
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Prior Work:

Anonymous Reconstruction:

. [Stinson, Vanstone ‘88]: Studied anonymous reconstruction for
threshold access structures with perfect correctness, privacy,
and distinct share values.

. [Phillips, Phillips '92]: Studied anonymous reconstruction ideadl
secret sharing (share size equal to secret size). Showed

impossible for (¢, n)-threshold for ¢t & {1,n}.

. [Blundo, Stinson '97]: Considered (t, n)-threshold and an
infinite class of non-threshold access structures. Showed a
lower bound that the bit length of the shares needs to be

Q(log n) additively larger than the number of bits needed to
represent the secret.

. [Kishimoto, Okada, Kurosawa, Ogata ‘02]: Slightly tightens the
constant in the lower bound above. Tight for the case of t = 2.




Prior Work:

Share Anonymity and FASS:

« [Guillermo, Martin, O'Keefe ‘0O3]:

- Considered our notion of S-Anonymity under the name “strong
combinatorial cryptographic anonymity”. Considered anonymous
reconstruction as “submission anonymity”.

- Proposed constructions achieving S-FASS for a special class of
access structures with strong symmetry properties.

- Observed permuted Shamir’s secret sharing is S-FASS for
threshold access structures.

. [Paskin-Cherniavsky, Olimid 20]

- Their definition of Decisional Share-Unpredicability is morally M-
Anonymity.

- Gives a construction achieving (implicitly) statistical U-FASS for
arbitrary access structures.




Prior Work:

Share Anonymity and FASS:

|[Eldridge, Beck, Green, Heninger, Jain "24]

Constructed statistical U-FASS with robust
reconstruction (for constant many dealers) for
threshold access structure.

Gave practical applications for M-FASS with robust
reconstruction for abuse-resistant location tracking.



Our Work: A Systematic study O

“ADD

Information-theoretic contributions:

- Nearly matching

- Implies the upper-bound is a near-
optimal generic construction for any
monotone access structure.

In contrast, in standard secret sharing there's an

exponential gap
lower bou

New upper bound: Improve the share size
of the U-FASS scheme from PO20.

lower bound on share size.

petween known upper and

Nds on share sizes.




Our Work: A Systematic Study of FASS

Computational Contributions:

- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational M-
fully anonymous secret sharing scheme for the
same access structure.

- Preserves the share size of the underlying scheme.
- Secrecy based on the hardness of LWE.

- Computational FASS schemes for specific graph
access structures using other assumptions, e.g. OWF,
DLIN. Circumvents info-theoretic lower bound.

. All our computational schemes enjoy unbounded
dealer robust reconstruction.
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Sriefly: Our Computational Contrioutions

Computational Contributions: _ dealer with secret s

- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational M-fully
anonymous secret sharing scheme for the same
access structure.

- Preserves the share size of the underlying scheme.

- Secrecy based on the hardness of LWE.

n parties
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Computational Contributions:

Existence of OWF impl
with unbounded rob

- Computational FASS schemes for specific graph
access structures using other assumptions, e.g. OWF,
DLIN. Circumvents info-theoretic lower bound.

v- Our Computational Contriputions

ies U-FASS for star-graph

Ust reconstruction with

shares size O(A), where A is a security parameter.

Circumvents IT lower bound of £2(n).

n parties
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Computational Contributions:
Hardness of DLIN imp

bipartite graphs wi

ies U-FASS

v- Our Computational Contriputions

for complete

th unbounc

- Computational FASS schemes for specific graph
access structures using other assumptions, e.g. OWF,
DLIN. Circumvents info-theoretic lower bound.

n parties

ed robust

reconstruction with shares size O(A4), where A is a
security parameter.

Circumvents IT lower bound of £2(n).

n parties
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For the sake of time, will only detail the information-theoretic results:

Lower Bound: For every m, d € N, there is an n-party access structure *Q[m,d with

n =md + 1, represented by a monotone DNF with £ = d"" minterms of degree

t = O(m), such that:

- Every U-FASS scheme for &, ; has per-party share size QD).

- 9, ;has a monotone CNF representation with O(m) clauses of size O(d).

(S



Our Information-Theoretic Results

For the sake of time, will only detail the information-theoretic results:

Lower Bound: For every m,d € N, there is an n-party access structure *Q[m,d with Fixd = 2

n =md + 1, represented by a monotone DNF with £ = d"" minterms of degree

t = O(m), such that: For every m € N, there is an

access structure with O(m)

parties, with £ = 2™ minterms

- Every U-FASS scheme for &, ; has per-party share size QD).
of degree O(m) with per-party
share size Q(¢).

- 9, ;has a monotone CNF representation with O(m) clauses of size O(d).



Our Information-Theoretic Results

For the sake of time, will only detail the information-theoretic results:

Fix d = 2

Forevery m € N, there is an
access structure with O(m)

parties, with £ = 2™ minterms

of degree O(m) with per-party
share size Q(¢).




Our Information-Theoretic Results

For the sake of time, will only detail the information-theoretic results:

Fix d = 2

Forevery m € N, there is an
access structure with O(m)
parties, with £ = 2™ minterms
of degree O(m) with per-party
share size Q(¢).

Upper Bound: For any monotone DNF formula @ with £ minterms of maximal

degree t and statistical correctness parameter A, there exists a U-FASS scheme

realizing @ that satisfies

- Perfect U-anonymity (implying perfect secrecy) and 2~ correctness error

- A per-party share size of O(Aﬁ) for sharing a 1-bit secret.




Our Information-Theoretic Results

For the sake of time, will only detail the information-theoretic results:

Fix d = 2

Forevery m € N, there is an
access structure with O(m)

parties, with £ = 2™ minterms

of degree O(m) with per-party
share size Q(¢).

Upper bound: O(7)



formation-Theoretic U-FASS

Any monotone access structure & : {0,1}" — {0,1} can be
expressed as a monotone DNF.

e.g. the access structure {{py}, {P,, P3}} can be expressed as

x; V((xy A X3))
N ~aminterm of degree 2



formation-Theoretic U-FASS

Any monotone access structure & : {0,1}" — {0,1} can be
expressed as a monotone DNF.

e.g. the access structure {{p;}, 1P, P3}} can be expressed as

X, V(x5 A X2).
: 27374 minterm of degree 2

|Paskin-Cherniavsky, Olimid 20] Information-theoretic solution:
Freshly share the secret for each minterm!



formation-Theoretic U-FASS

X5 A X3
Modifying an elegant solution from PO20 for secrets s € {0,1 }:
- Sample random linearly independent vectors vy, v, € F?. Set

V3:(S+1)‘V2.

- Append v; to Party 1's share.

Perfect Reconstruction: Find the minimal linear dependency.

Perfect Secrecy: Unauthorized sets are distributed identically regardless of s.

Statistical U-Anonymity: For appropriate field size, linearly
independent vectors are statistically close to random vectors.




formation-Theoretic U-FASS

XA A X,

- Sample random linearly independent vectors v,, ..., vV, € =1

[
Setv; =(s+1)-v,+ Y v,
=3

- Append v; to Party 1's share.

Perfect Reconstruction: Find the minimal linear dependency.

Perfect Secrecy: Unauthorized sets are distributed identically regardless of s.

Statistical U-Anonymity: For appropriate field size, linearly
independent vectors are statistically close to random vectors.




formation-Theoretic U-FASS

X| A s AX,
- Sample random linearly independent vectors v,, ..., vV, € =1
[
Setvy =(s+ 1) v+ ) v,
=3

- Append v; to Party 1's share.

Per-party Share-size: O(z,”n) where £ is the number of minterms.

Even for simple and explicit access structures, such as

(X VX)) A3 Vxg) A A(x,_1Vx,), the #minterms is exponential in n.

Is an exponential per-party share-size hecessary?



or U-FASS

[inear Lower Bound:

The star-graph access structure captures the bit complexity needead
iNn a single share.

center share
Sy

¢ %

an edge = min. authorized set

n leaf shares



A Linear Lower Bound for U-FASS

Secrecy: Every leaf share must have at least one bit of entropy.

U-Anonymity: Leaf shares are conditionally independent.

Correctness: The central node can reconstruct from any of the leaf shares.

center share

@

an edge = min. authorized set

n leaf shares




A Linear Lower Bound for U-FASS

Secrecy: Every leaf share must have at least one bit of entropy.

U-Anonymity: Leaf shares are conditionally independent.

Correctness: The central node can reconstruct from any of the leaf shares.

> 1 bits of entropy

@

an edge = min. authorized set

n leaf shares




A Linear Lower Bound for U-FASS

Secrecy: Every leaf share must have at least one bit of entropy.

U-Anonymity: Leaf shares are conditionally independent.

Correctness: The central node can reconstruct from any of the leaf shares.

> 1 bits of entropy

@

by U-Anonymity = n bits of entropy




A Linear Lower Bound for U-FASS

Conclusion: For any U-FASS scheme for the star-graph with O(n) parties, the per-party
share size is at least £2(n) bits. (N.B., there’s a 1-bit solution for S-FASS).

> 1 bits of entropy

@

by U-Anonymity = n bits of entropy




A Quadratic Lower Bound for U-FASS

Now consider the (2,n)-star graph access structure.

n left leaf
shares

2 )
/ 7,

n right leaf
shares

Min. auth set = {left,
center, right}




or U-FASS

ower Bound:

A Quadratic .

By prior argument, left and right shares each have at least £2(n) bits of entropy.

Apply the prior argument again to show that center node has Q(nz) bits of entropy.

n left leaf
shares

@

Min. auth set = {left,
center, right}

n right leaf
shares




An Exponential Lower Bound tor U-FASS

Argument extends to (m, k) star graph for any m, k € N.

- lower bound of (k™) bits per-party.

> 2" bits of entropy

(m,2)- star graph: m groups of 2
Q2o



LOWer

An Exponential -

o1 M-

Sound

Argument extends to (m, k) star graph for any m, k € N.

- lower bound of €2(k™) bits per-party.

- extends to M-FASS.

> 2" bits of entropy

FADD

(m,2)- star graph: m groups of 2

Q0
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Near-Optimal In:

XA A X,

FADD

- Sample random linearly independent vectors v,, ..., vV, € =1

[
Setv; =(s+1)-v,+ Y v,

Party 1's share is v..

=3

Per-party Share-size: O(Kn) where £ is the number of minterms.



formation-Theoretic U-.

Near-Optimal |

FADD

XA A X,

- Sample uniform random vectors v, ..., vV, € Fmax—1 Set

4
V1=(S+1)°V2+ZVZ-.
i=3

- Append v; to party 1's share.

Per-party Share-size: O(£

t..) Where £ is the number of minterms

and £, IS maximum degree of any minterm.



Open Questions

* Does there exist information-theoretic FASS scheme for threshold access structures with perfect correctness and
oerfect U-Anonymity?

*In the ramp (gap-threshold) setting, yes—[Con 25].

* Simplest open case—(3,3) threshold.

* Can you obtain a computationally efficient information-theoretic S-FASS scheme for the weighted threshold access
structure?

* Standard virtualization approach of Shamir’s secret sharing fails to achieve even S-Anonymity. Padding may break
correctness.

* Are one-way functions sufficient for general computational FASS schemes?

* Does efficient computational U-FASS for CNFs imply any public-key primitives?



Thank youl




Appendix: Improved Info-
theoretic Upper Bound
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|Paskin-Cherniavsky, Olimid 20] Information-theoretic solution:
Freshly share the secret for each minterm!
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We'll present a large-tfield version of their scheme.
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formation-Theoretic U-FASS

|Paskin-Cherniavsky, Olimid 20] Information-theoretic solution:
Freshly share the secret for each minterm!

We'll present a large-tfield version of their scheme.
X1 V(X% A X3).

Can ignore degree one minterms without affecting correctness,
secrecy, nor anonymity. Give party 1the secret.




formation-Theoretic U-FASS

|Paskin-Cherniavsky, Olimid 20] Information-theoretic solution:
Freshly share the secret for each minterm!

We'll present a large-tfield version of their scheme.

X5 A X3



formation-Theoretic U-FASS

|Paskin-Cherniavsky, Olimid 20] Information-theoretic solution:
Freshly share the secret for each minterm!

We'll present a large-tfield version of their scheme.
X5 A X3,

Moditying an elegant solution from PO20:

- Sample random linearly independent vectors vy, v, € F?. Set
V3=(S+1)‘V2.

- Append v; to Party 1's share.



Near-Optimal Information-T'heoretic U-FASS

XA A X,

- Sample uniform random vectors v, ..., vV, € Fmax—1 Set

4
V1=(S+1)°V2+ZVZ-.
i=3

- Append v; to party 1's share.

Per-party Share-size: O(Iftmax) where £ is the number of minterms

and £, IS maximum degree of any minterm.

Statistical Correctness: Find a linear dependent set of a specific size
for each minterm.

Perfect U-Anonymity: Uniform random vectors!



Appendix: Computational
Ccompiler
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Sriefly: Our Computational Contrioutions

Computational Contributions: _ dealer with secret s

- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational M-fully
anonymous secret sharing scheme for the same
access structure.

- Preserves the share size of the underlying scheme.

- Secrecy based on the hardness of LWE.

Consider any monotone access
structure .

n parties
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Sriefly: Our Computational Contrioutions

Computational Contributions: _ dealer with secret s

- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational fully
anonymous secret sharing scheme for the same

share s with standard secret sharing
ACCeSS structure.

- Preserves the share size of the underlying scheme. :
(Idj, Sh])

- Secrecy based on the hardness of LWE.

Consider any monotone access
structure .

n parties
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Sriefly: Our Computational Contrioutions

Computational Contributions: _ dealer with secret s

- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational fully
anonymous secret sharing scheme for the same

share s with standard secret sharing
ACCeSS structure.

- Preserves the share size of the underlying scheme. :
(Idj, Sh])

- Secrecy based on the hardness of LWE.

not anonymous, so encrypt it.

Consider any monotone access
structure .

n parties
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v- Our Computational Contriputions

Computational Contributions: dealer with secret s

& secret key sk

- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational fully
anonymous secret sharing scheme for the same

share s with standard secret sharing
ACCeSS structure.

- Preserves the share size of the underlying scheme. :
(Idj, Sh])

- Secrecy based on the hardness of LWE.

not anonymous, so encrypt it.

Enc(sk, Pad((id;, sh;)))

n parties

Consider any monotone access
structure .
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Computational Contributions:

- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational fully
anonymous secret sharing scheme for the same
access structure.

- Preserves the share size of the underlying scheme.

- Secrecy based on the hardness of LWE.

Consider any monotone access
structure .

v- Our Computational Contriputions

dealer with secret s

)) & secret key sk

Ideal obfuscation of function f,  that
(1) Decrypts input and strips padding.

(2) If reconstructs to §, output s, else output L.

Enc(sk, Pad((id;, sh;)))

n parties
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v- Our Computational Contriputions

Computational Contributions: dealer with secret s

)) & secret key sk

- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational fully
anonymous secret sharing scheme for the same
access structure.

A variation using Compute-and-compare
. Preserves the share size of the underlying scheme. Obfuscation [\Wichs, Zerdelis 17, Govyal,

Koppula, Waters 17].

- Secrecy based on the hardness of LWE.

Enc(sk, Pad((id;, sh;)))

n parties

Consider any monotone access
structure .
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- A generic compiler from any secret sharing scheme
(with info-theoretic or computational secrecy) for any
monotone access structure to a computational fully
anonymous secret sharing scheme for the same

access structure. Unbounded Robust Reconstruction: Use

. . secret-key encryption scheme that when
- Preserves the share size of the underlying scheme. Y U

decrypting with the wrong key, results in L.
. Secrecy based on the hardness of LWE. (Minor moditication)

Enc(sk, Pad((id;, sh;)))

n parties

Consider any monotone access
structure .




