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Fully Anonymous Secret Sharing



Fully Anonymous Secret Sharing—Overview

An {S, M, U}-fully anonymous secret sharing scheme satisfies 
{S, M, U}-anonymity (respectively) and anonymous reconstruction.

S-Anonymous  M-Anonymous  U-Anonymous ⊊ ⊊

Additionally, we desire robust reconstruction—reconstruction in the 
presence of multiple dealers, ideally for an unbounded number.

We systematically study notions of anonymity. 

We give info-theoretic upper and lower bounds on share sizes that are nearly 
tight. We show that use of cryptography circumvents the lower bounds!



Motivating Various Definitions of Share 
Anonymity— {S, M, U}-Anonymity



Warm-up: Shamir’s Secret Sharing

 partiesn

dealer with secret s



For a secret  the dealer samples a polynomial  
 for random 

s ∈ 𝔽q
p(x) = s + a1x + … + at−1xt−1 a1, …, at−1 ∈ 𝔽q

 partiesn

dealer with secret s

Warm-up: Shamir’s Secret Sharing



𝗌𝗁1 = (1, p(1)) ∈ 𝔽q × 𝔽q 𝗌𝗁n = (n, p(n)) ∈ 𝔽q × 𝔽q

For a secret  the dealer samples a polynomial  
 for random 

s ∈ 𝔽q
p(x) = s + a1x + … + at−1xt−1 a1, …, at−1 ∈ 𝔽q

…

 partiesn

dealer with secret s

Warm-up: Shamir’s Secret Sharing



𝗌𝗁1 = (1, p(1)) ∈ 𝔽q × 𝔽q 𝗌𝗁n = (n, p(n)) ∈ 𝔽q × 𝔽q

Perfectly correct, information-theoretic secrecy, with optimal share size . ≈ log n

 partiesn

dealer with secret s

Warm-up: Shamir’s Secret Sharing



𝗌𝗁1 = (1, p(1)) ∈ 𝔽q × 𝔽q 𝗌𝗁n = (n, p(n)) ∈ 𝔽q × 𝔽q

Each party’s 
share reveals its 

identity! 

 partiesn

dealer with secret s

Perfectly correct, information-theoretic secrecy, with optimal share size . ≈ log n

Warm-up: Shamir’s Secret Sharing



𝗌𝗁1 = (1, p(1)) ∈ 𝔽q × 𝔽q 𝗌𝗁n = (n, p(n)) ∈ 𝔽q × 𝔽q

Each party’s 
share reveals its 

identity! 

Basic question: Can a party’s share hide its identity? 

i.e. can we achieve “share anonymity”?

 partiesn

dealer with secret s

Warm-up: Shamir’s Secret Sharing



Warm-up: Permuted Shamir’s Secret Sharing

 partiesn

dealer with secret s

1. For a secret , the dealer samples a polynomial  
 for random . 

2. Additionally picks a permutation  on  elements.

s ∈ 𝔽q
p(x) = s + a1x + … + at−1xt−1 a1, …, at−1 ∈ 𝔽q

π n



 partiesn

dealer with secret s

𝗌𝗁1 = (π(1), p(π(1))) 𝗌𝗁n = (π(n), p(π(n)))

1. For a secret , the dealer samples a polynomial  
 for random . 

2. Additionally picks a permutation  on  elements.

s ∈ 𝔽q
p(x) = s + a1x + … + at−1xt−1 a1, …, at−1 ∈ 𝔽q

π n

Warm-up: Permuted Shamir’s Secret Sharing



 partiesn

dealer with secret s

𝗌𝗁1 = (π(1), p(π(1))) 𝗌𝗁n = (π(n), p(π(n)))

 is hidden. So 
party’s identity is 

hidden!

π

1. For a secret , the dealer samples a polynomial  
 for random . 

2. Additionally picks a permutation  on  elements.

s ∈ 𝔽q
p(x) = s + a1x + … + at−1xt−1 a1, …, at−1 ∈ 𝔽q

π n

Warm-up: Permuted Shamir’s Secret Sharing



 partiesn

dealer with secret s

𝗌𝗁1 = (π(1), p(π(1))) 𝗌𝗁n = (π(n), p(π(n)))

 is hidden. So 
party’s identity is 

hidden!

π

Perfectly correct, information-theoretic secrecy, with optimal share size   
AND satisfies share anonymity (we term as Single-dealer or S-Anonymity)!

≈ log n

Warm-up: Permuted Shamir’s Secret Sharing



 partiesn

dealer with secret s

𝗌𝗁1 = (π(1), p(π(1))) 𝗌𝗁n = (π(n), p(π(n)))

 is hidden. So 
party’s identity is 

hidden!

π

Does this permutation anonymize all interesting information while 
preserving perfect correctness and optimal share sizes?

Warm-up: Permuted Shamir’s Secret Sharing



Multi-Dealer Anonymity (M-Anonymity)

dealer 1 with secret s1 dealer 2 with secret s2

Can an adversary distinguish between the following two distributions?

Distribution 1: A set of unauthorized shares produced by dealer 1. 
 
Distribution 2: A set of some unauthorized shares from dealer 1 
and some unauthorized shares from dealer 2. 



dealer 1 with secret s1 dealer 2 with secret s2

Can an adversary distinguish between the following two distributions?

Distribution 1: A set of unauthorized shares produced by dealer 1. 
 
Distribution 2: A set of some unauthorized shares from dealer 1 
and some unauthorized shares from dealer 2. 

Previously motivated and studied by [Eldridge-Beck-Green-
Heninger-Jain USENIX ’24] for abuse-resistant location tracking 

(e.g. abuse-resistant Apple Airtags).

Multi-Dealer Anonymity (M-Anonymity)



dealer 1 with secret s1 dealer 2 with secret s2

Permuted Shamir’s Secret Sharing does not satisfy M-Anonymity!

Warm-up: Permuted Shamir’s Secret Sharing



dealer 1 with secret s1 dealer 2 with secret s2

𝗌𝗁(1)
1 = (π1(1), p(π1(1)))

𝗌𝗁(2)
2 = (π2(2), p(π2(2)))

Imagine Adversary selects parties  and receives the 
following two shares from the challenger:

{1,2}

 probability that . 
This is impossible if these two shares 

came from the same dealer!

1/n π1(1) = π2(2)

Warm-up: Permuted Shamir’s Secret Sharing

Permuted Shamir’s Secret Sharing does not satisfy M-Anonymity!



Warm-up: Random Shamir’s Secret Sharing

 partiesn𝗌𝗁1 = ($, p($)) 𝗌𝗁n = ($, p($))

dealer with secret s

For a secret , the dealer samples a polynomial  
 for random .

s ∈ 𝔽q
p(x) = s + a1x + … + at−1xt−1 a1, …, at−1 ∈ 𝔽q

…



 partiesn𝗌𝗁1 = ($, p($)) 𝗌𝗁n = ($, p($))

dealer with secret s

Additionally satisfies a stronger notion than M-Anonymity: 

- any unauthorized set of shares is uniform random (U-Anonymity).

Warm-up: Random Shamir’s Secret Sharing



 partiesn𝗌𝗁1 = ($, p($)) 𝗌𝗁n = ($, p($))

dealer with secret s

However, correctness error is now .1/q

For negligible correctness error, the share size is now .ω(log n)

Warm-up: Random Shamir’s Secret Sharing



Fully Anonymous Secret Sharing—Overview

An {S, M, U}-fully anonymous secret sharing scheme satisfies 
{S, M, U}-anonymity (respectively) and anonymous reconstruction.

S-Anonymous  M-Anonymous  U-Anonymous ⊊ ⊊

Additionally, we desire robust reconstruction—reconstruction in the 
presence of multiple dealers, ideally for an unbounded number.

We systematically study notions of anonymity. 



Robust and Anonymous 
Reconstruction



But wait… how do we reconstruct with many dealers?

 many dealersk

Suppose they all emit Shamir secret shares of their own secrets.  

Given a set of shares, how can we recover all secrets corresponding to 
authorized sets? 



Robust Reconstruction

 many dealersk

Easy solution: Each dealer tags its shares with a dealer ID. 

Problem: Violates M-Anonymity.

Suppose they all emit Shamir secret shares of their own secrets.  

Given a set of shares, how can we recover all secrets corresponding to 
authorized sets? 



Robust Reconstruction

 many dealersk

Suppose they all emit Shamir secret shares of their own secrets.  

Given a set of shares, how can we recover all secrets corresponding to 
authorized sets? 

[Eldridge, Beck, Green, Heninger, Jain USENIX ’24] gave an error-
correcting code based M-anonymous scheme that handles a 

constant number of dealers for the threshold access structure.

Easy solution: Each dealer tags its shares with a dealer ID. 

Problem: Violates M-Anonymity.



Anonymous Reconstruction

 partiesn𝗌𝗁1 = ($, p($)) 𝗌𝗁n = ($, p($))

dealer with secret s

The reconstruction algorithm for Shamir’s secret sharing is 
polynomial interpolation, which does not need to use party 

identities, i.e. which parties hold which shares. 
 

This is what we refer to as anonymous reconstruction.



Anonymous Reconstruction

𝗌𝗁1 = s 𝗌𝗁2 = s ⊕ r

dealer with secret s

Non-example for anonymous reconstruction: Consider an access 
structure over three parties  where the minimal 

authorized sets are . Consider the following scheme:

{p1, p2, p3}
{{p1}, {p2, p3}}

𝗌𝗁3 = r



Anonymous Reconstruction

𝗌𝗁1 = s 𝗌𝗁2 = s ⊕ r

dealer with secret s

Non-example for anonymous reconstruction: Consider an access 
structure over three parties  where the minimal 

authorized sets are . Consider the following scheme:

{p1, p2, p3}
{{p1}, {p2, p3}}

𝗌𝗁3 = r

𝗌𝗁1 = (1, s) 𝗌𝗁2 = (2, s ⊕ r) 𝗌𝗁3 = (3, r)Fix (not S-Anon):



Fully Anonymous Secret Sharing—Overview

An {S, M, U}-fully anonymous secret sharing scheme satisfies 
{S, M, U}-anonymity (respectively) and anonymous reconstruction.

S-Anonymous  M-Anonymous  U-Anonymous ⊊ ⊊

Additionally, we desire robust reconstruction—reconstruction in the 
presence of multiple dealers, ideally for an unbounded number.



Technical Challenge of Building FASS 
Schemes for Arbitrary Access 
Structures



The Technical Challenge

dealer with secret s

Example: Consider an access structure that is an 
AND of two - thresholds.(t, n/2)

Most known methods [Ito, Saito, Nishizeki ’87,  Benaloh, Leichter ’90, Liu, Vaikuntanathan ’18, Appelbaum, Beimel, 

Farràs, Nir, Peter ’19] of constructing secret sharing schemes for arbitrary access 
structures breaks the access structure into ANDs and ORs and uses 

recursive composition!

This kills anonymity!



The Technical Challenge

dealer with secret s

𝗌𝗁1 = ($, p1($)) 𝗌𝗁n/2 = ($, p1($))

s1 s2

s = s1 ⊕ s2

… …

𝗌𝗁n/2+1 = ($, p2($)) 𝗌𝗁n = ($, p2($))

Consider an access structure that is 
an AND of two - thresholds.(t, n/2)



The Technical Challenge

dealer with secret s

𝗌𝗁1 = ($, p1($)) 𝗌𝗁n/2 = ($, p1($))

s1 s2

s = s1 ⊕ s2

… …

𝗌𝗁n/2+1 = ($, p2($)) 𝗌𝗁n = ($, p2($))

Consider an access structure that is 
an AND of two - thresholds.(t, n/2)

Consider an 
unauthorized set of 

 left parties.t + 1



The Technical Challenge

dealer with secret s

𝗌𝗁1 = ($, p1($)) 𝗌𝗁n/2 = ($, p1($))

s1 s2

s = s1 ⊕ s2

… …

𝗌𝗁n/2+1 = ($, p2($)) 𝗌𝗁n = ($, p2($))

Consider an access structure that is 
an AND of two - thresholds.(t, n/2)

To be anonymous, any 
such set should 

partially reconstruct to 
a different value!

Consider an 
unauthorized set of 

 left parties.t + 1



The Technical Challenge

dealer with secret s

𝗌𝗁1 = ($, p1($)) 𝗌𝗁n/2 = ($, p1($))

s1 s2

s = s1 ⊕ s2

… …

𝗌𝗁n/2+1 = ($, p2($)) 𝗌𝗁n = ($, p2($))

Consider an access structure that is 
an AND of two - thresholds.(t, n/2)

To be anonymous, any 
such set should 

partially reconstruct to 
a different value!

Intuitively: This means 
right side share has to 

be large enough to 
account for many 

possible reconstruction 
paths!

Consider an 
unauthorized set of 

 left parties.t + 1



Prior Work:

• [Stinson, Vanstone ’88]: Studied anonymous reconstruction for 
threshold access structures with perfect correctness, privacy, 
and distinct share values. 

• [Phillips, Phillips ’92]: Studied anonymous reconstruction ideal 
secret sharing (share size equal to secret size). Showed 
impossible for -threshold for .  

• [Blundo, Stinson ’97]: Considered -threshold and an 
infinite class of non-threshold access structures. Showed a 
lower bound that the bit length of the shares needs to be 

 additively larger than the number of bits needed to 
represent the secret.  

• [Kishimoto, Okada, Kurosawa, Ogata ’02]: Slightly tightens the 
constant in the lower bound above. Tight for the case of .

(t, n) t ∉ {1,n}

(t, n)

Ω(log n)

t = 2

Anonymous Reconstruction:



Prior Work:

• [Guillermo, Martin, O’Keefe ’03]: 

• Considered our notion of S-Anonymity under the name “strong 
combinatorial cryptographic anonymity”. Considered anonymous 
reconstruction as “submission anonymity”.  

• Proposed constructions achieving S-FASS for a special class of 
access structures with strong symmetry properties.  

• Observed permuted Shamir’s secret sharing is S-FASS for 
threshold access structures. 

• [Paskin-Cherniavsky, Olimid ‘20]  

• Their definition of Decisional Share-Unpredicability is morally M-
Anonymity.  

• Gives a construction achieving (implicitly) statistical U-FASS for 
arbitrary access structures. 

Anonymous Reconstruction: Share Anonymity and FASS:

• [Stinson, Vaa
aa
aaa

• [Phillips, Phillips ’92]: Studied aa
aaa
 

• [Blundo, Stinson ’97]: Considered -threshold aa
faaa
aa

aaa


• [Kishimoto, Okaaaaaa
aaa

(t, n) t ∉ {1,n}

(t, n)

Ω(log n)

t = 2



Prior Work:

• [Guillermo, Ma

• Considered our notion of S-Anonymity under the na
aaaaa
aa

• Proposed constructions aaaa
a

• Observed permuted Shaa
a

• [Paa

• Their defaaaa


• Gives aaaa
aaa

Share Anonymity and FASS:

• [Eldridge, Beck, Green, Heninger, Jain ’24] 

• Constructed statistical U-FASS with robust 
reconstruction (for constant many dealers) for 
threshold access structure. 

• Gave practical applications for M-FASS with robust 
reconstruction for abuse-resistant location tracking.



Our Work: A Systematic Study of FASS.

• New upper bound: Improve the share size 
of the U-FASS scheme from PO’20.  

• Nearly matching lower bound on share size. 

• Implies the upper-bound is a near-
optimal generic construction for any 
monotone access structure.

Information-theoretic contributions:

In contrast, in standard secret sharing there’s an 
exponential gap between known upper and 

lower bounds on share sizes.



Our Work: A Systematic Study of FASS.
Computational Contributions:

• A generic compiler from any secret sharing scheme 
(with info-theoretic or computational secrecy) for any 
monotone access structure to a computational M-
fully anonymous secret sharing scheme for the 
same access structure.  

• Preserves the share size of the underlying scheme. 

• Secrecy based on the hardness of LWE. 

• Computational FASS schemes for specific graph 
access structures using other assumptions,  e.g. OWF, 
DLIN. Circumvents info-theoretic lower bound. 

• All our computational schemes enjoy unbounded 
dealer robust reconstruction.

• New upper bound: Improve the sha


• Neaaa

• Implies the upper-bound is aa
aa
a

In contraaaaa
aaa

a

Informa



Briefly: Our Computational Contributions
Computational Contributions:

• A generic compiler from any secret sharing scheme 
(with info-theoretic or computational secrecy) for any 
monotone access structure to a computational M-fully 
anonymous secret sharing scheme for the same 
access structure.  

• Preserves the share size of the underlying scheme. 

• Secrecy based on the hardness of LWE. 

• Computational FASS schemes for specific graph 
access structures using other assumptions,  e.g. OWF, 
DLIN. Circumvents info-theoretic lower bound. 

• All our computational schemes enjoy unbounded 
dealer robust reconstruction.

 partiesn

dealer with secret s

Uses Compute-and-compare Obfuscation 
[Wichs, Zerdelis ’17, Goyal, Koppula, Waters ’17].



Briefly: Our Computational Contributions
Computational Contributions:

• A generic compiler from any secret sharing scheme 
(with info-theoretic or computational secrecy) for any 
monotone access structure to a computational fully 
anonymous secret sharing scheme for the same 
access structure.  

• Preserves the share size of the underlying scheme. 

• Secrecy based on the hardness of LWE. 

• Computational FASS schemes for specific graph 
access structures using other assumptions,  e.g. OWF, 
DLIN. Circumvents info-theoretic lower bound. 

• All our computational schemes enjoy unbounded 
dealer robust reconstruction.

Existence of OWF implies U-FASS for star-graph 
with unbounded robust reconstruction with 

shares size , where  is a security parameter. 

 Circumvents IT lower bound of . 

O(λ) λ

Ω(n)

 partiesn



Briefly: Our Computational Contributions
Computational Contributions:

• A generic compiler from any secret sharing scheme 
(with info-theoretic or computational secrecy) for any 
monotone access structure to a computational fully 
anonymous secret sharing scheme for the same 
access structure.  

• Preserves the share size of the underlying scheme. 

• Secrecy based on the hardness of LWE. 

• Computational FASS schemes for specific graph 
access structures using other assumptions,  e.g. OWF, 
DLIN. Circumvents info-theoretic lower bound. 

• All our computational schemes enjoy unbounded 
dealer robust reconstruction.

Hardness of DLIN implies U-FASS for complete 
bipartite graphs with unbounded robust 

reconstruction with shares size , where  is a 
security parameter. 

 Circumvents IT lower bound of . 

O(λ) λ

Ω(n)

 partiesn  partiesn



Our Information-Theoretic Results
For the sake of time, will only detail the information-theoretic results:

 Lower Bound: For every , there is an -party access structure  with 

, represented by a monotone DNF with  minterms of degree 
, such that: 

- Every U-FASS scheme for  has per-party share size . 

-  has a monotone CNF representation with  clauses of size .

m, d ∈ ℕ n 𝒜m,d

n = md + 1 ℓ = dm

t = O(m)

𝒜m,d Ω(ℓ)

𝒜m,d O(m) O(d)
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, represented by a monotone DNF with  minterms of degree 
, such that: 

- Every U-FASS scheme for  has per-party share size . 

-  has a monotone CNF representation with  clauses of size .

m, d ∈ ℕ n 𝒜m,d

n = md + 1 ℓ = dm

t = O(m)

𝒜m,d Ω(ℓ)

𝒜m,d O(m) O(d)

Fix : 

For every , there is an 
access structure with  
parties, with  minterms 
of degree  with per-party 
share size .

d = 2

m ∈ ℕ
O(m)

ℓ = 2m

O(m)
Ω(ℓ)

Our Information-Theoretic Results
For the sake of time, will only detail the information-theoretic results:
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a
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-  haaa a
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a
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- Every U-FASS scheme for  haaa

-  haaa a

m, d ∈ ℕ n 𝒜

n = md + 1 ℓ = dm

t = O(m)

𝒜 Ω(ℓ)

𝒜 O(m) O(d)

Upper Bound: For any monotone DNF formula  with  minterms of maximal 
degree  and statistical correctness parameter , there exists a U-FASS scheme 
realizing  that satisfies 

- Perfect U-anonymity (implying perfect secrecy) and  correctness error 

- A per-party share size of  for sharing a 1-bit secret. 

Φ ℓ
t λ
Φ

2−λ

Õ(λℓt)
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Our Information-Theoretic Results
For the sake of time, will only detail the information-theoretic results:
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m, d ∈ ℕ n 𝒜

n = md + 1 ℓ = dm
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- Perfect U-aa

- A per-paa aa
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t λ
Φ

2−λ

Õ(λℓt)

Fix : 

For every , there is an 
access structure with  
parties, with  minterms 
of degree  with per-party 
share size .

d = 2

m ∈ ℕ
O(m)

ℓ = 2m

O(m)
Ω(ℓ)

Upper bound: Õ(ℓ)

Our Information-Theoretic Results
For the sake of time, will only detail the information-theoretic results:



Information-Theoretic U-FASS
Any monotone access structure  can be 

expressed as a monotone DNF. 

e.g. the access structure   can be expressed as 

.

𝒜 : {0,1}n → {0,1}

{{p1}, {p2, p3}}
x1 ∨ (x2 ∧ x3) a minterm of degree 2



Information-Theoretic U-FASS
Any monotone a a

aa

e.g. the a aa



𝒜   

{{p1}, {p2, p3}}
x1 ∨ (x2 ∧ x3)

[Paskin-Cherniavsky, Olimid ‘20] Information-theoretic solution: 
Freshly share the secret for each minterm!

a



Information-Theoretic U-FASS
.x2 ∧ x3

Modifying an elegant solution from PO’20 for secrets :s ∈ {0,1}

- Sample random linearly independent vectors . Set 

. 

- Append  to Party ’s share.

v1, v2 ∈ 𝔽2

v3 = (s + 1) ⋅ v2

vi i

Perfect Reconstruction: Find the minimal linear dependency.

Perfect Secrecy: Unauthorized sets are distributed identically regardless of .s

Statistical U-Anonymity: For appropriate field size, linearly 
independent vectors are statistically close to random vectors.



Information-Theoretic U-FASS
.x1 ∧ ⋯ ∧ xt

- Sample random linearly independent vectors . 

Set . 

- Append  to Party ’s share.

v2, …, vn ∈ 𝔽n−1

v1 = (s + 1) ⋅ v2 +
t

∑
i=3

vi

vi i

Perfect Secrecy: Unauthorized sets are distributed identically regardless of .s

Statistical U-Anonymity: For appropriate field size, linearly 
independent vectors are statistically close to random vectors.

Perfect Reconstruction: Find the minimal linear dependency.



Information-Theoretic U-FASS
.x1 ∧ ⋯ ∧ xt

- Sample random linearly independent vectors . 

Set . 

- Append  to Party ’s share.

v2, …, vn ∈ 𝔽n−1

v1 = (s + 1) ⋅ v2 +
t

∑
i=3

vi

vi i

Per-party Share-size:  where  is the number of minterms.Õ(ℓn) ℓ

Even for simple and explicit access structures, such as
, the #minterms is exponential in . 

Is an exponential per-party share-size necessary?

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ ⋯ ∧ (xn−1 ∨ xn) n



The star-graph access structure captures the bit complexity needed 
in a single share. 

 leaf sharesn

center share

an edge = min. authorized set

A Linear Lower Bound for U-FASS



A Linear Lower Bound for U-FASS

an edge = min. authorized set

center share

Secrecy: Every leaf share must have at least one bit of entropy. 

U-Anonymity: Leaf shares are conditionally independent.  

Correctness: The central node can reconstruct from any of the leaf shares.

 leaf sharesn



A Linear Lower Bound for U-FASS
Secrecy: Every leaf share must have at least one bit of entropy. 

U-Anonymity: Leaf shares are conditionally independent.  

Correctness: The central node can reconstruct from any of the leaf shares.

 bits of entropy≥ n

an edge = min. authorized set

 leaf sharesn



A Linear Lower Bound for U-FASS

by U-Anonymity  bits of entropy≥ n

Secrecy: Every leaf share must have at least one bit of entropy. 

U-Anonymity: Leaf shares are conditionally independent.  

Correctness: The central node can reconstruct from any of the leaf shares.

 bits of entropy≥ n



A Linear Lower Bound for U-FASS

Conclusion: For any U-FASS scheme for the star-graph with  parties, the per-party 
share size is at least  bits. (N.B., there’s a 1-bit solution for S-FASS).

O(n)
Ω(n)

 bits of entropy≥ n

by U-Anonymity  bits of entropy≥ n



A Quadratic Lower Bound for U-FASS

Now consider the -star graph access structure.(2,n)

 right leaf 
shares

n left leaf 
shares

n

Min. auth set = {left, 
center, right} 



A Quadratic Lower Bound for U-FASS

 right leaf 
shares

n left leaf 
shares

n

Min. auth set = {left, 
center, right} 

By prior argument, left and right shares each have at least  bits of entropy. 

Apply the prior argument again to show that center node has  bits of entropy.

Ω(n)

Ω(n2)



An Exponential Lower Bound for U-FASS

- star graph:  groups of 2(m,2) m

Argument extends to  star graph for any . 

- lower bound of  bits per-party. 

(m, k) m, k ∈ ℕ
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An Exponential Lower Bound for M-FASS

- star graph:  groups of 2(m,2) m

Argument extends to  star graph for any .  

- lower bound of  bits per-party.  

- extends to M-FASS.

(m, k) m, k ∈ ℕ

Ω(km)

 bits of entropy≥ 2m



Near-Optimal Information-Theoretic U-FASS
.x1 ∧ ⋯ ∧ xt

- Sample random linearly independent vectors . 

Set . 

-   Party ’s share is .

v2, …, vn ∈ 𝔽n−1

v1 = (s + 1) ⋅ v2 +
t

∑
i=3

vi

i vi

Per-party Share-size:  where  is the number of minterms.Õ(ℓn) ℓ



Near-Optimal Information-Theoretic U-FASS
.x1 ∧ ⋯ ∧ xt

- Sample uniform random vectors . Set 

. 

-  Append  to party ’s share.

v2, …, vn ∈ 𝔽 tmax−1

v1 = (s + 1) ⋅ v2 +
t

∑
i=3

vi

vi i

Per-party Share-size:  where  is the number of minterms 

and  is maximum degree of any minterm.

Õ(ℓtmax) ℓ
tmax



Open Questions

✴Does there exist information-theoretic FASS scheme for threshold access structures with perfect correctness and 
perfect U-Anonymity?  

✴ In the ramp (gap-threshold) setting, yes—[Con ‘25].  

✴Simplest open case—  threshold. 

✴Can you obtain a computationally efficient information-theoretic S-FASS scheme for the weighted threshold access 
structure? 

✴  Standard virtualization approach of Shamir’s secret sharing fails to achieve even S-Anonymity. Padding may break 
correctness. 

✴Are one-way functions sufficient for general computational FASS schemes? 

✴Does efficient computational U-FASS for CNFs imply any public-key primitives?

(3,5)



Thank you!



Appendix: Improved Info-
theoretic Upper Bound
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Information-Theoretic U-FASS
[Paskin-Cherniavsky, Olimid ‘20] Information-theoretic solution: 

Freshly share the secret for each minterm!

Can ignore degree one minterms without affecting correctness, 
secrecy, nor anonymity. Give party 1 the secret.
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Information-Theoretic U-FASS
[Paskin-Cherniavsky, Olimid ‘20] Information-theoretic solution: 

Freshly share the secret for each minterm!

.x2 ∧ x3

Modifying an elegant solution from PO’20:

- Sample random linearly independent vectors . Set 

. 

- Append  to Party ’s share.

v1, v2 ∈ 𝔽2

v3 = (s + 1) ⋅ v2

vi i

We’ll present a large-field version of their scheme.



Near-Optimal Information-Theoretic U-FASS
.x1 ∧ ⋯ ∧ xt

- Sample uniform random vectors . Set 

. 

-  Append  to party ’s share.

v2, …, vn ∈ 𝔽 tmax−1

v1 = (s + 1) ⋅ v2 +
t

∑
i=3

vi

vi i

Per-party Share-size:  where  is the number of minterms 

and  is maximum degree of any minterm.

Õ(ℓtmax) ℓ
tmax

Perfect U-Anonymity: Uniform random vectors!

Statistical Correctness: Find a linear dependent set of a specific size 
for each minterm.



Appendix: Computational 
Compiler



Briefly: Our Computational Contributions
Computational Contributions:

• A generic compiler from any secret sharing scheme 
(with info-theoretic or computational secrecy) for any 
monotone access structure to a computational M-fully 
anonymous secret sharing scheme for the same 
access structure.  

• Preserves the share size of the underlying scheme. 

• Secrecy based on the hardness of LWE. 

• Computational FASS schemes for specific graph 
access structures using other assumptions,  e.g. OWF, 
DLIN. Circumvents info-theoretic lower bound. 

• All our computational schemes enjoy unbounded 
dealer robust reconstruction.

 partiesn

dealer with secret s

Consider any monotone access 
structure .𝒜
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• A generic compiler from any secret sharing scheme 
(with info-theoretic or computational secrecy) for any 
monotone access structure to a computational fully 
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• Secrecy based on the hardness of LWE. 
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• A generic compiler from any secret sharing scheme 
(with info-theoretic or computational secrecy) for any 
monotone access structure to a computational fully 
anonymous secret sharing scheme for the same 
access structure.  

• Preserves the share size of the underlying scheme. 

• Secrecy based on the hardness of LWE. 

• Computational FASS schemes for specific graph 
access structures using other assumptions,  e.g. OWF, 
DLIN. Circumvents info-theoretic lower bound. 

• All our computational schemes enjoy unbounded 
dealer robust reconstruction.
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Briefly: Our Computational Contributions
Computational Contributions:
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access structure.  

• Preserves the share size of the underlying scheme. 

• Secrecy based on the hardness of LWE. 
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Briefly: Our Computational Contributions
Computational Contributions:

• A generic compiler from any secret sharing scheme 
(with info-theoretic or computational secrecy) for any 
monotone access structure to a computational fully 
anonymous secret sharing scheme for the same 
access structure.  

• Preserves the share size of the underlying scheme. 

• Secrecy based on the hardness of LWE. 

• Computational FASS schemes for specific graph 
access structures using other assumptions,  e.g. OWF, 
DLIN. Circumvents info-theoretic lower bound. 

• All our computational schemes enjoy unbounded 
dealer robust reconstruction.

 partiesn

Unbounded Robust Reconstruction: Use 
secret-key encryption scheme that when 

decrypting with the wrong key, results in . 
(Minor modification)

⊥
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