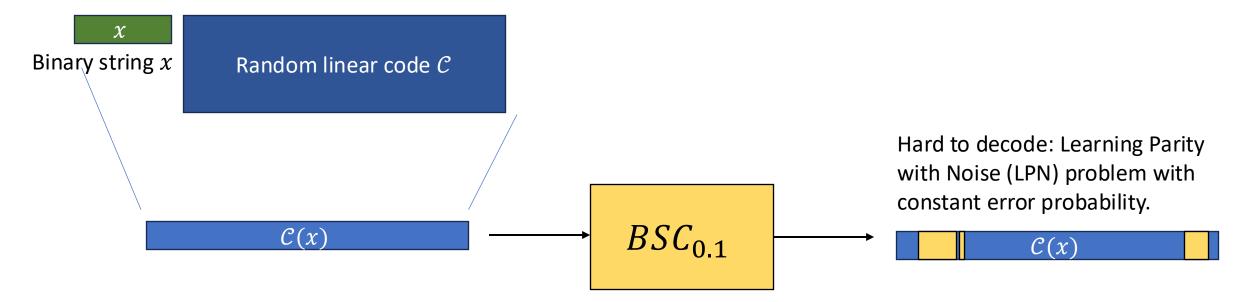


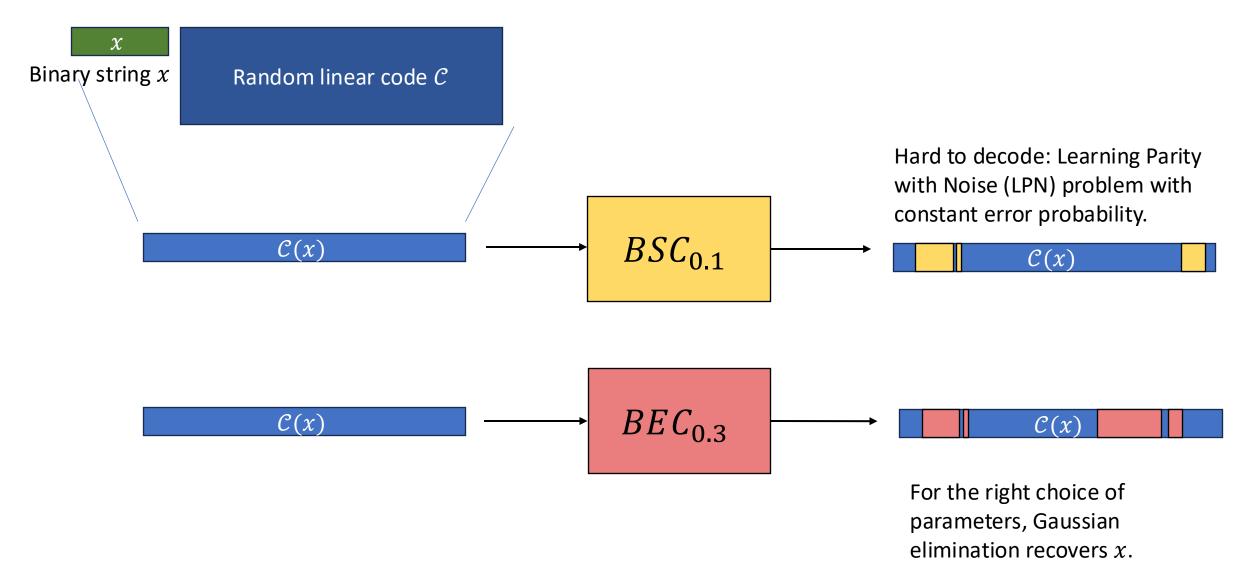
Computational Wiretap Coding from Indistinguishability Obfuscation

Yuval Ishai (Technion), Aayush Jain (CMU), Paul Lou (UCLA), Amit Sahai (UCLA), Mark Zhandry (NTT Research→Stanford) Teaser: Interesting special case of the general wiretap problem

Teaser: Curious Coding Theory Question

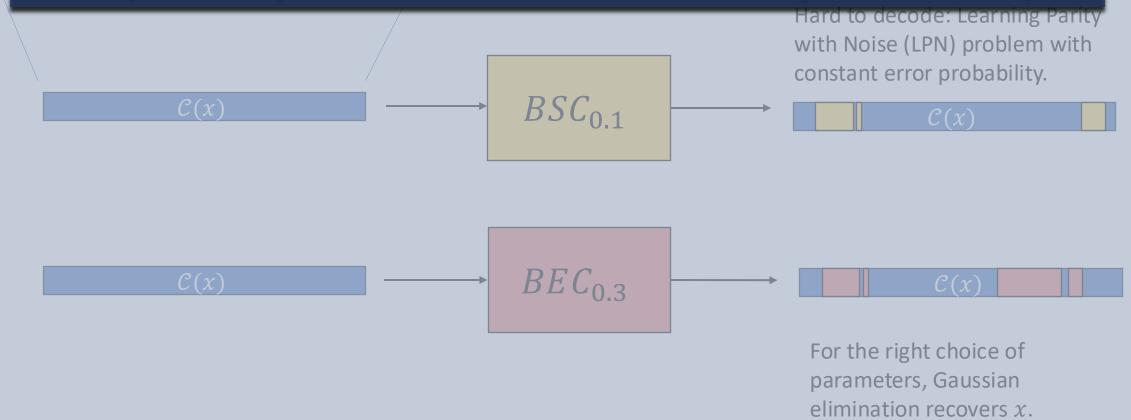


Teaser: Curious Coding Theory Question



Teaser: Curious Coding Theory Ouestion Do there exist error-correcting codes that satisfy the following?

- Binary s 1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
 - 2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]



Teaser: Curious Coding Theory Ouestion Do there exist error-correcting codes that satisfy the following? **Binary st** Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.] 1. **Computationally hard to decode from 0.3 erasure rate.** [Linear codes fail] 2. Hard to decode: Learning Parity Until 2022, no such codes known to satisfy both. $BSC_{0,1}$ $BEC_{0,3}$ For the right choice of parameters, Gaussian

elimination recovers x.

Teaser: Curious Coding Theory Ouestion Do there exist error-correcting codes that satisfy the following? **Binary** st Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.] **Computationally hard to decode from 0.3 erasure rate.** [Linear codes fail] 2. decode: Learning Parity Until 2022, no such codes known to satisfy both. RSC Ishai, Korb, Lou, Sahai '22: Yes*, in the ideal obfuscation model (or non-standard **VBB obfuscation assumptions)!** $BEC_{0,3}$ For the right choice of

parameters, Gaussian elimination recovers *x*.

Teaser: Curious Coding Theory Ouestion

Do there exist error-correcting codes that satisfy the following?

- Binary s 1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
 - 2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Hard to decode: Learning Parity

Until 2022, no such codes known to satisfy both.

Ishai, Korb, Lou, Sahai '22: Yes*, in the ideal obfuscation model (or non-standard VBB obfuscation assumptions)!

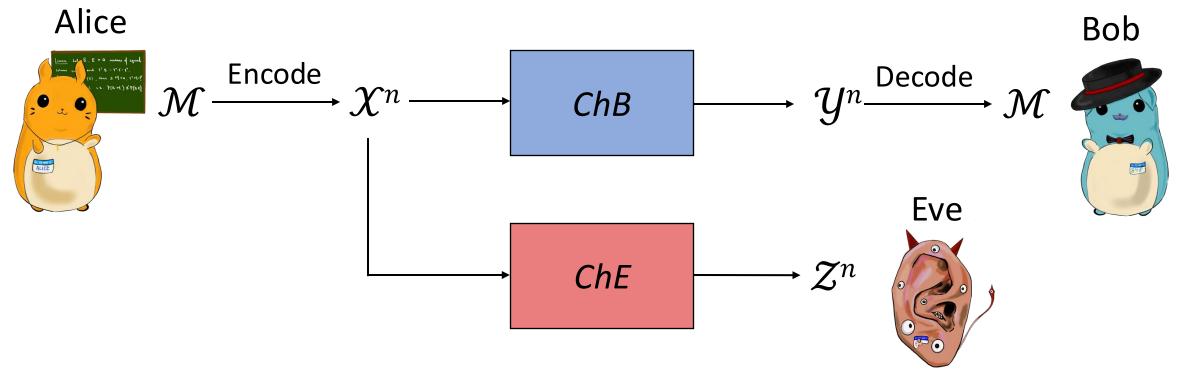
RSC

This Work: Yes*, assuming well-studied hardness assumptions!

CO.3

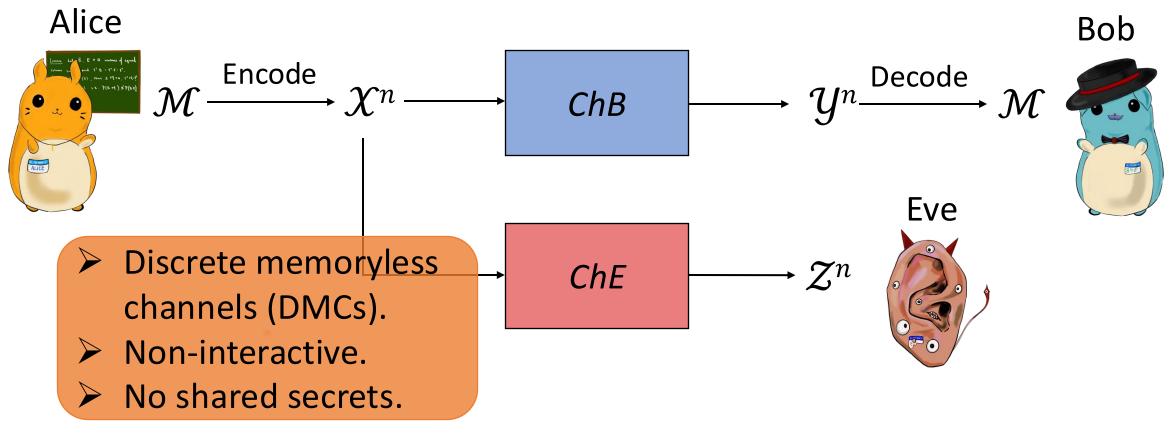
For the right choice of parameters, Gaussian elimination recovers *x*.

General Setting: Wiretap Channel [Wyn75]



Goal: Alice wants to send a message to Bob without Eve learning it.

More General Setting: Wiretap Channel [Wyn75]

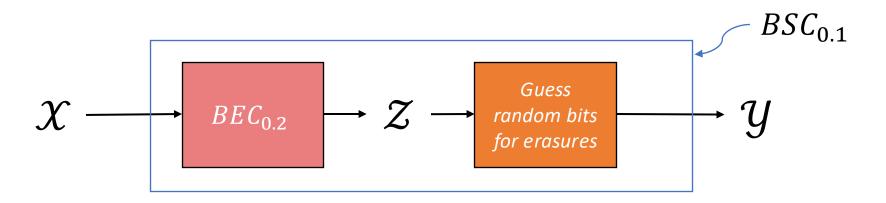


Goal: Alice wants to send a message to Bob without Eve learning it.

For what pairs of channels do wiretap coding schemes exist?

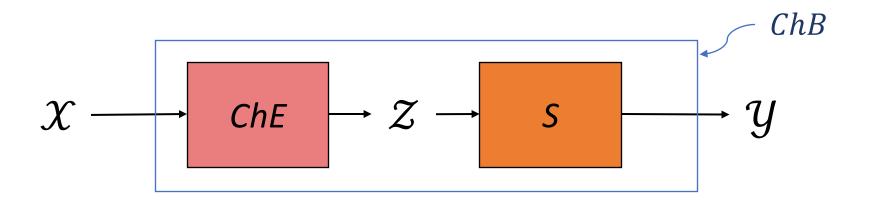
Intuitive Impossibility for Degraded Pairs

Impossible for channel pair $(BSC_{0,1}, BEC_{0,2})$. Eve can perfectly simulate $BSC_{0,1}$'s output distribution using an output of $BEC_{0,2}$.



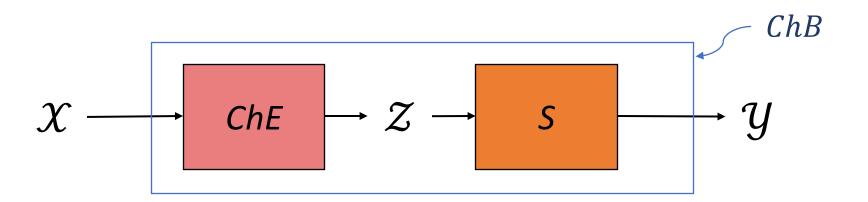
Intuitive Impossibility for Degraded Pairs

Impossible for any channel pair (ChB, ChE) where Eve can perfectly simulate ChB's output distribution using an output of ChE.

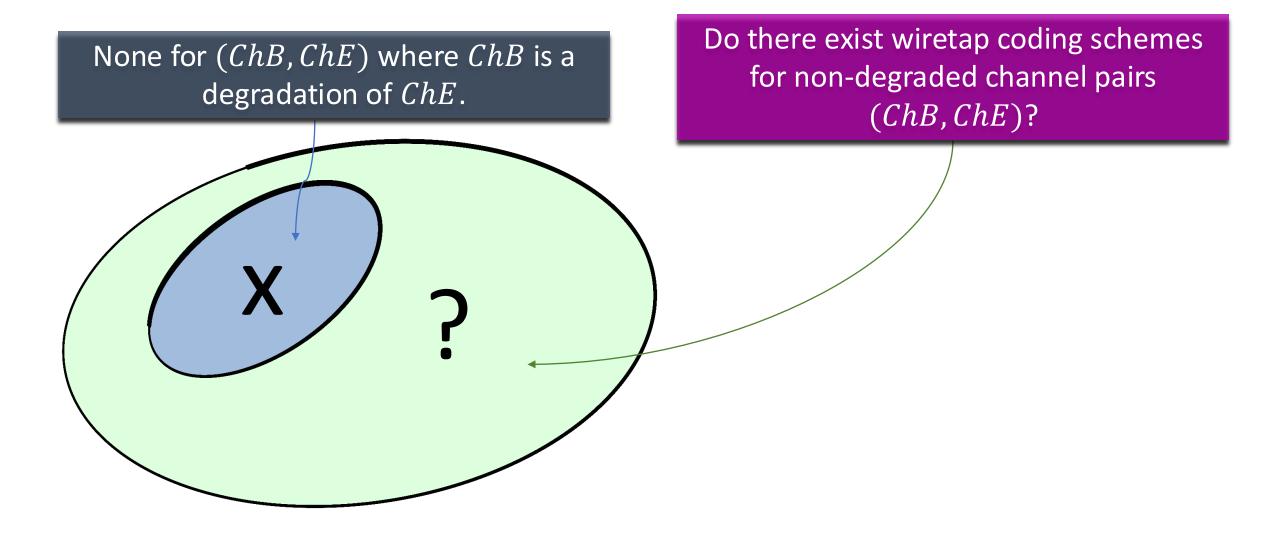


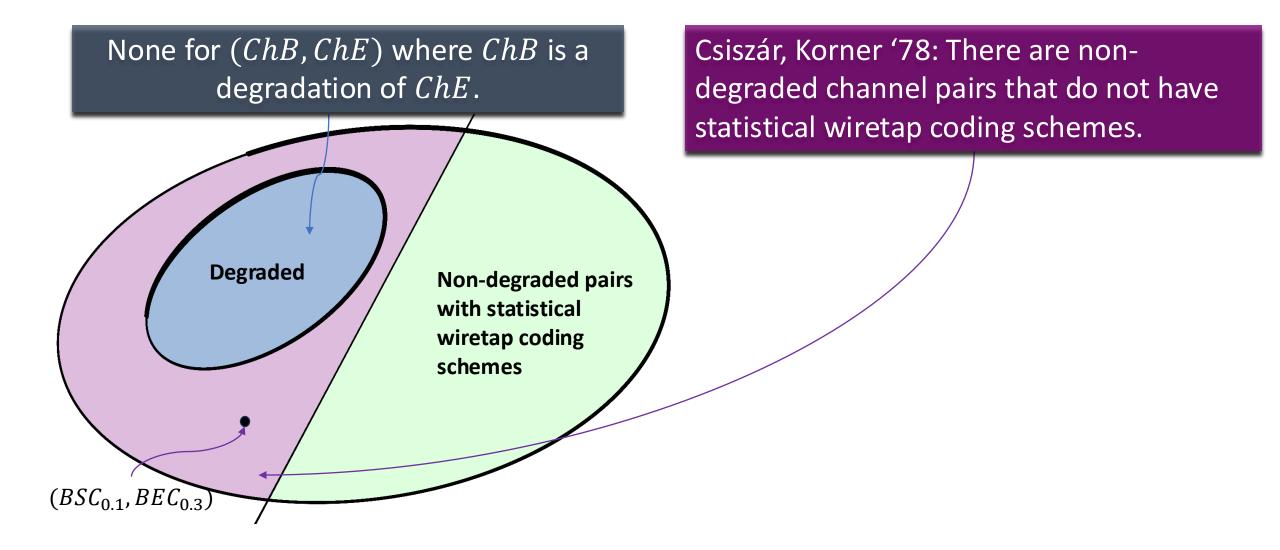
Intuitive Impossibility for Degraded Pairs

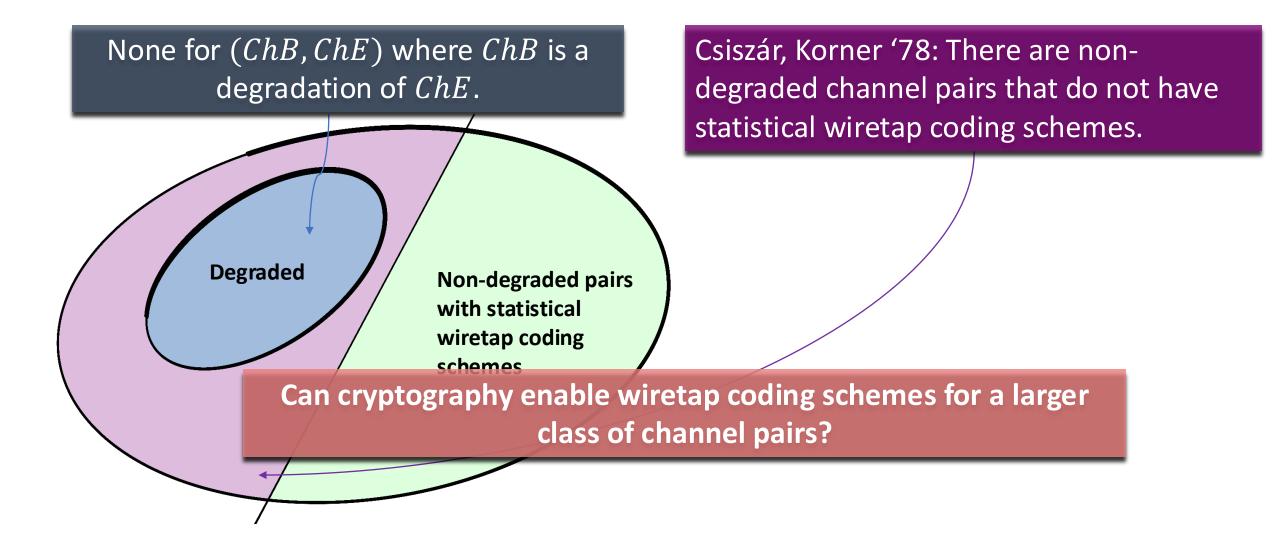
Impossible for any channel pair (ChB, ChE) where Eve can perfectly simulate ChB's output distribution using an output of ChE.

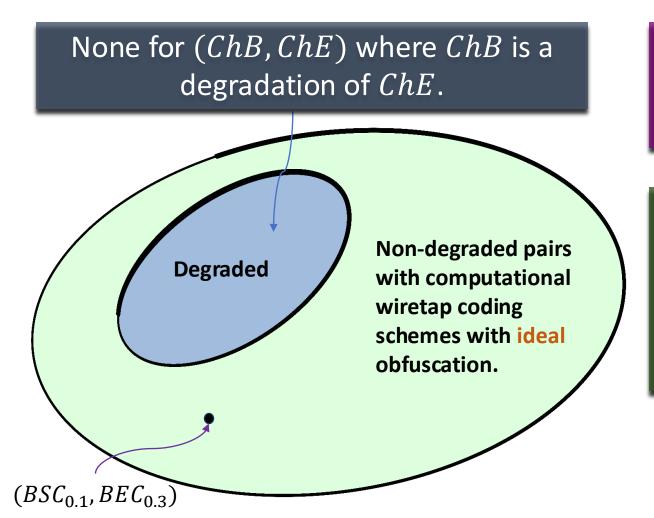


Degradation: *ChB* is a degradation of *ChE* if and only if Eve can perfectly simulate *ChB* using *ChE*.









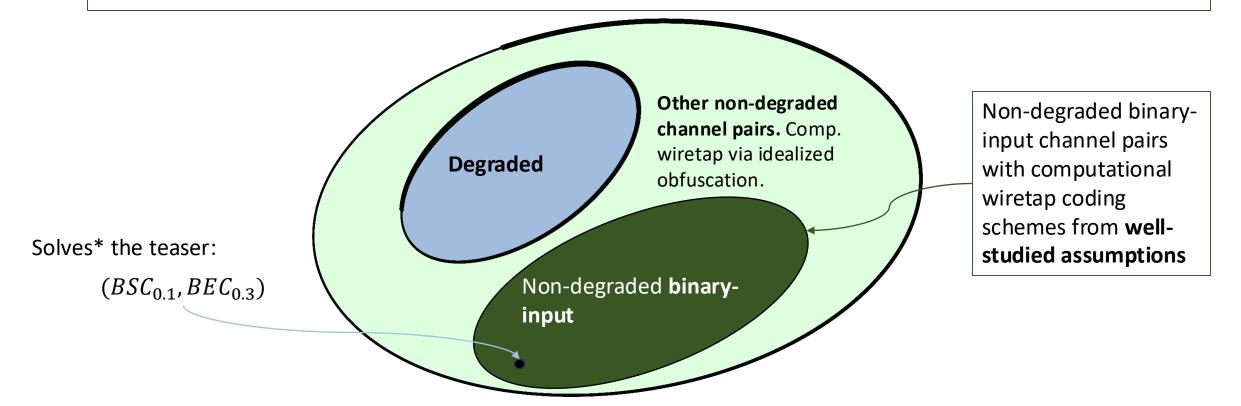
Csiszár, Korner '78: There are nondegraded channel pairs that do not have statistical wiretap coding schemes.

Ishai, Korb, Lou, Sahai '22: There exists a computational wiretap coding scheme for all non-degraded channel pairs in the Ideal Obfuscation Model (or non-std. VBB obfuscation).

Can we obtain computational wiretap coding schemes from well-studied assumptions?

Our Main Result: YES

Theorem: Assuming the existence of indistinguishability obfuscation (iO) and injective PRGs, there exists a computational wiretap coding scheme for any pair of non-degraded **binary-input** channels (ChB, ChE).



Our Techniques

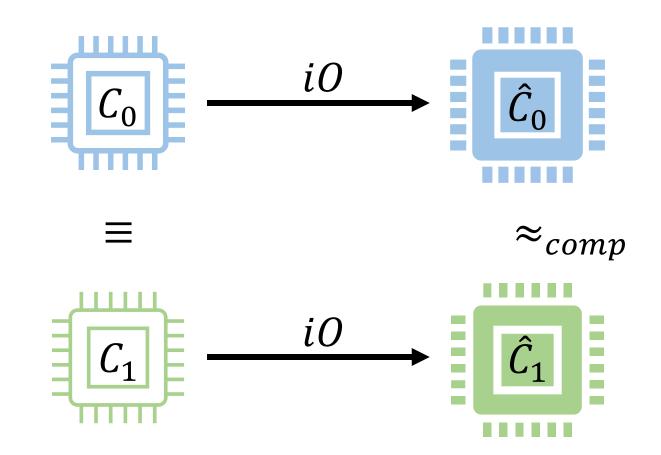
- 1. Using iO and injective PRGs, we construct a Hamming ball obfuscator.
 - ➢Construction uses a new gadget: PRG with Self-Correction.
 - Using this, we build computational wiretap coding schemes for binary asymmetric channels (BAC) and binary asymmetric erasure channels (BAEC).
- 2. We introduce a polytope characterization of degradation.
 - Using this polytope characterization, we reduce the problem of constructing a computational wiretap coding scheme for any non-degraded binary-input channel pair to constructing one for (BAC, BAEC).

Focus of this talk:

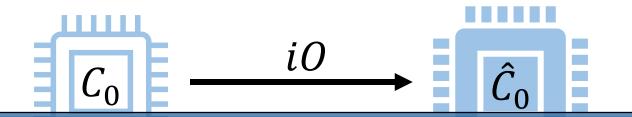
A computational wiretap coding scheme from *iO* for $(ChB = BSC_{0.1}, ChE = BEC_{0.3})$

*Construction idea easily extends to the non-degraded (BAC, BAEC) setting. **See paper or slide appendix for extension to all non-degraded binary-input.

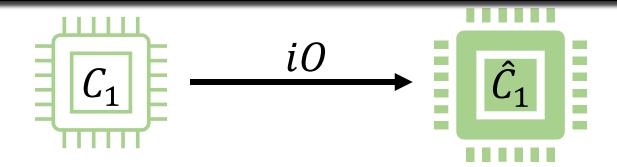
Indistinguishability Obfuscation (*iO*) [BGIRSVY01]



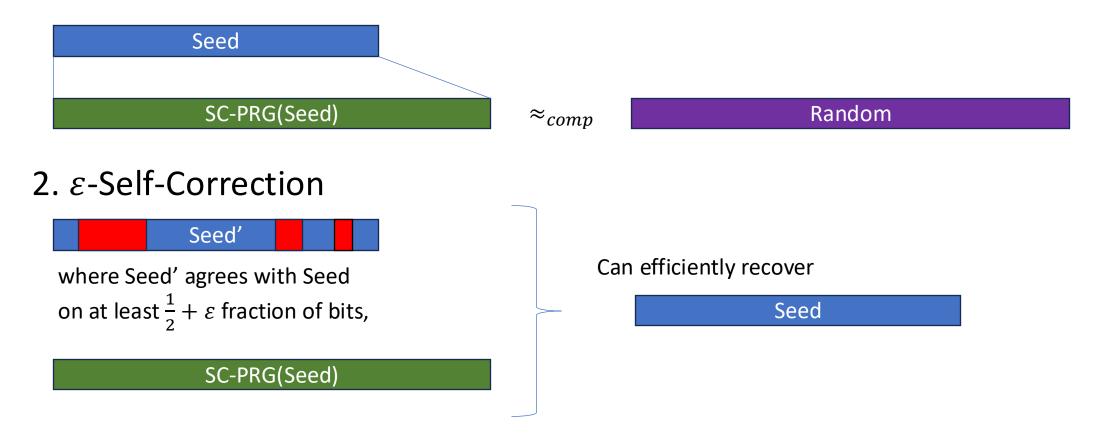
Indistinguishability Obfuscation (*iO*) [BGIRSVY01]



Now known from well-studied hardness assumptions !! [JLS21]



1. Polynomial Stretch & Pseudorandomness



1. Polynomial Stretch & Pseudorandomness

 \approx_{comp}

For this talk, $\varepsilon = \frac{1}{12}$. In general, some constant.

2. *E*-Self-Correction (recovery works w.h.p. over choices of seeds)

where Seed' agrees with Seed on at least $\frac{1}{2} + \varepsilon$ fraction of bits,

Seed

SC-PRC

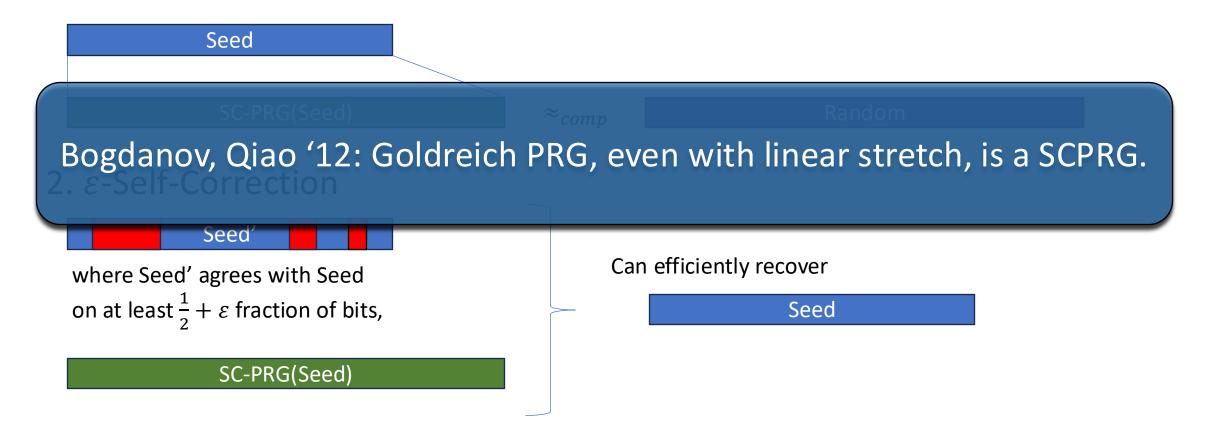
SC-PRG(Seed)

Can efficiently recover

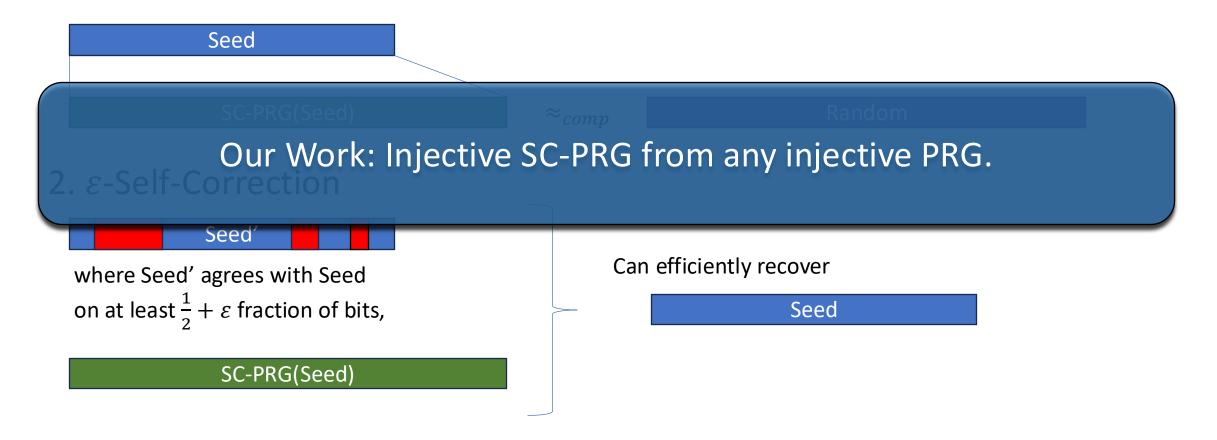
Seed

Random

1. Polynomial Stretch & Pseudorandomness

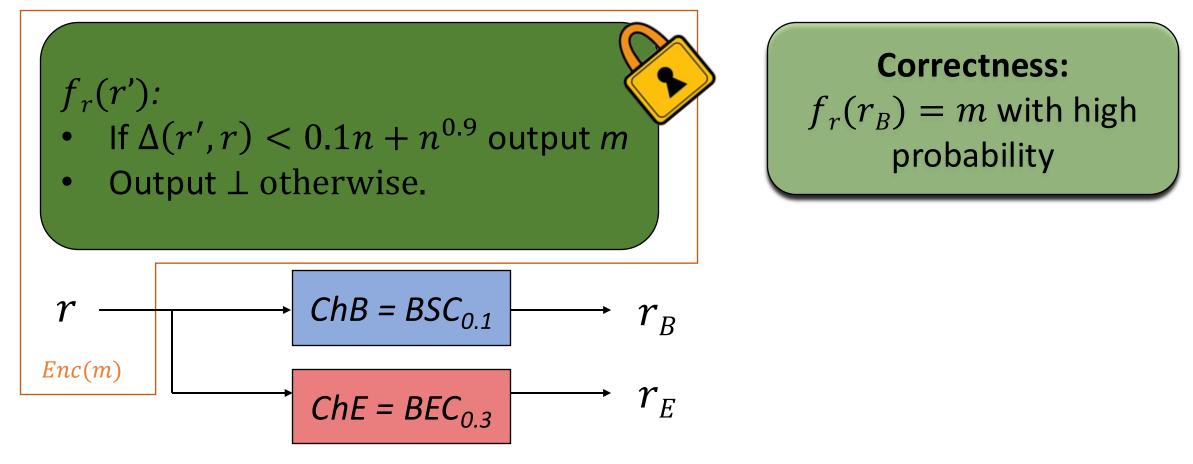


1. Polynomial Stretch & Pseudorandomness



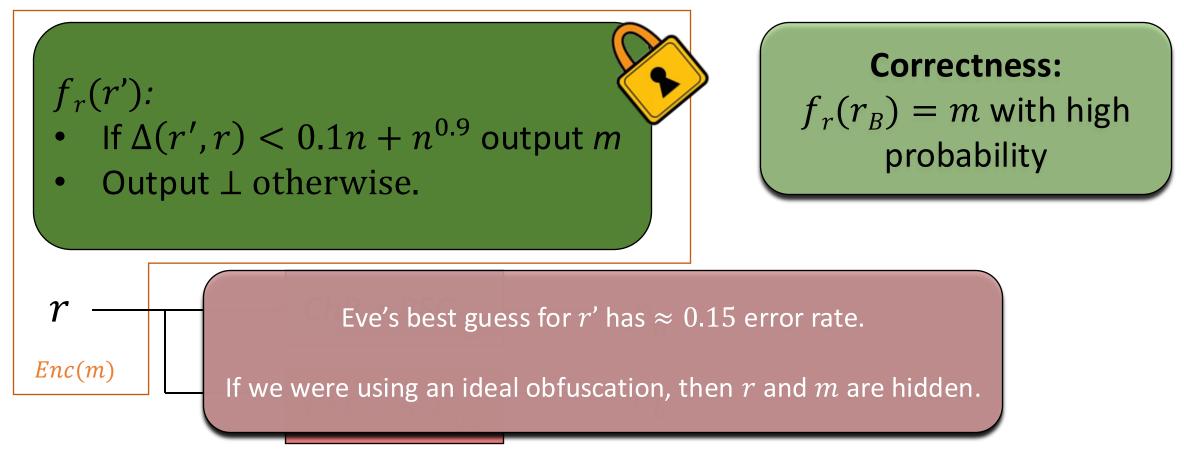
$$ChB = BSC_{0.1}, ChE = BEC_{0.3}$$

Using ideal obfuscation [IKLS22]: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send an obfuscation of f_r , encoded to Bob's channel.



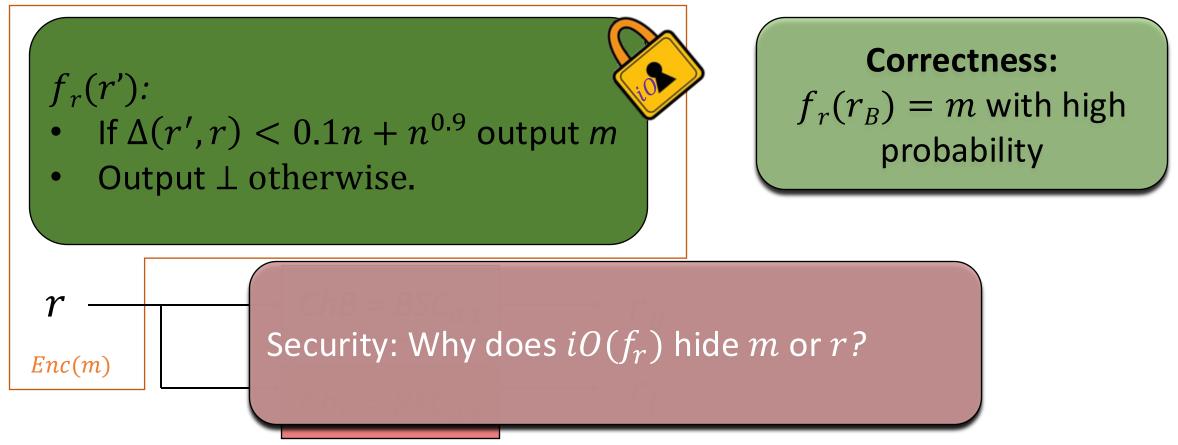
$$ChB = BSC_{0.1}, ChE = BEC_{0.3}$$

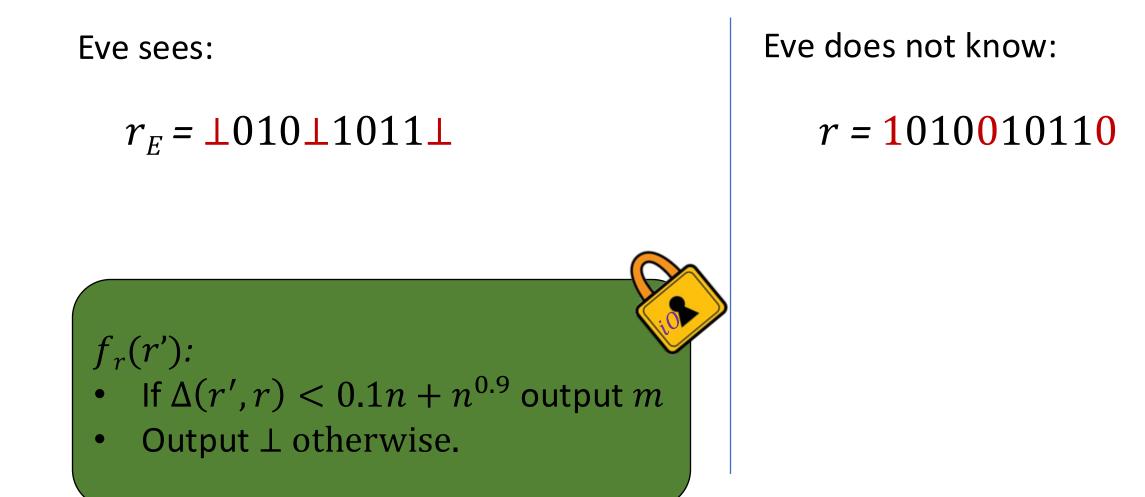
Using ideal obfuscation [IKLS22]: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send an obfuscation of f_r , encoded to Bob's channel.



$$ChB = BSC_{0.1}, ChE = BEC_{0.3}$$

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send an *iO* of f_r , encoded to Bob's channel.





Eve sees:

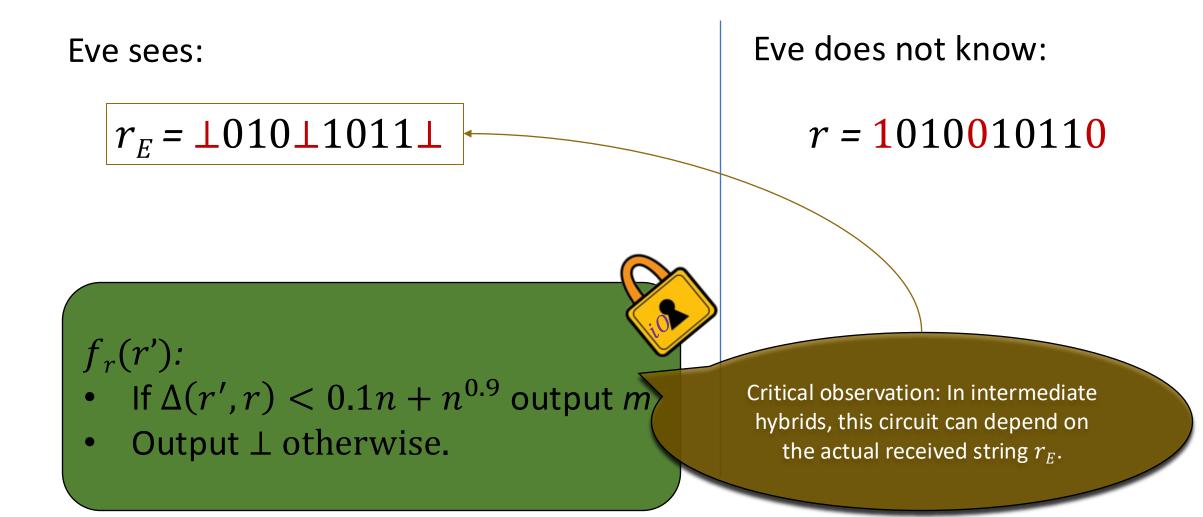
 $r_E = \bot 010 \bot 1011$

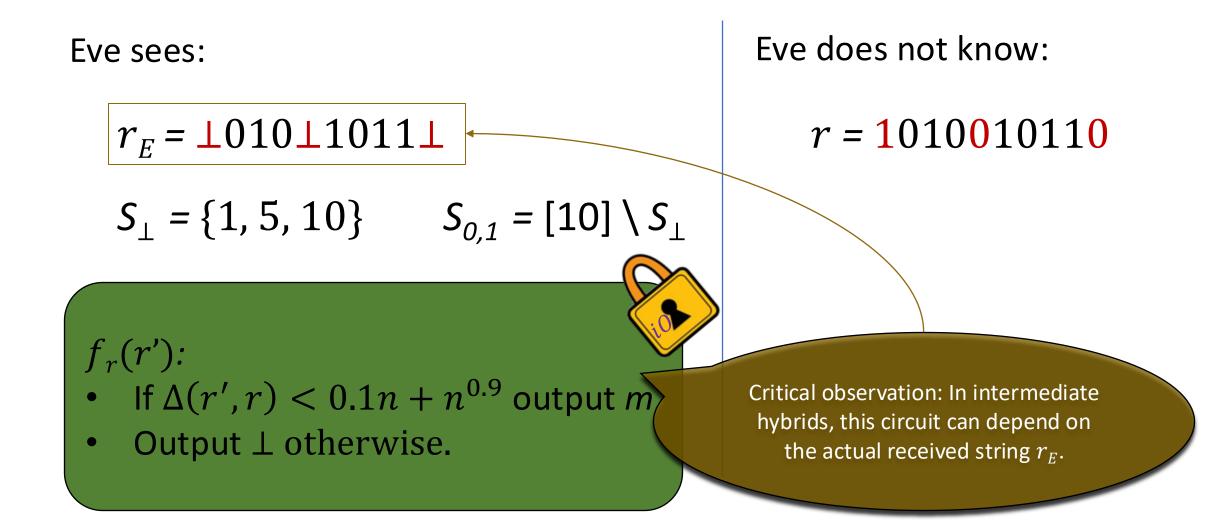
Goal: Use a hybrid argument to show that this circuit is indistinguishable from the null circuit.

Problem: There are **exponentially** many points in the Hamming ball!

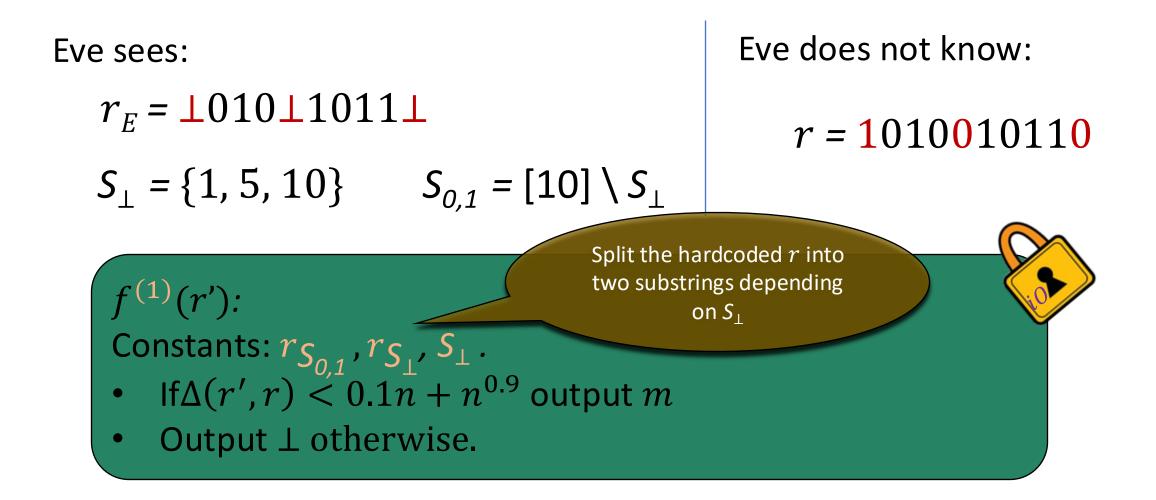
 $f_r(r')$:

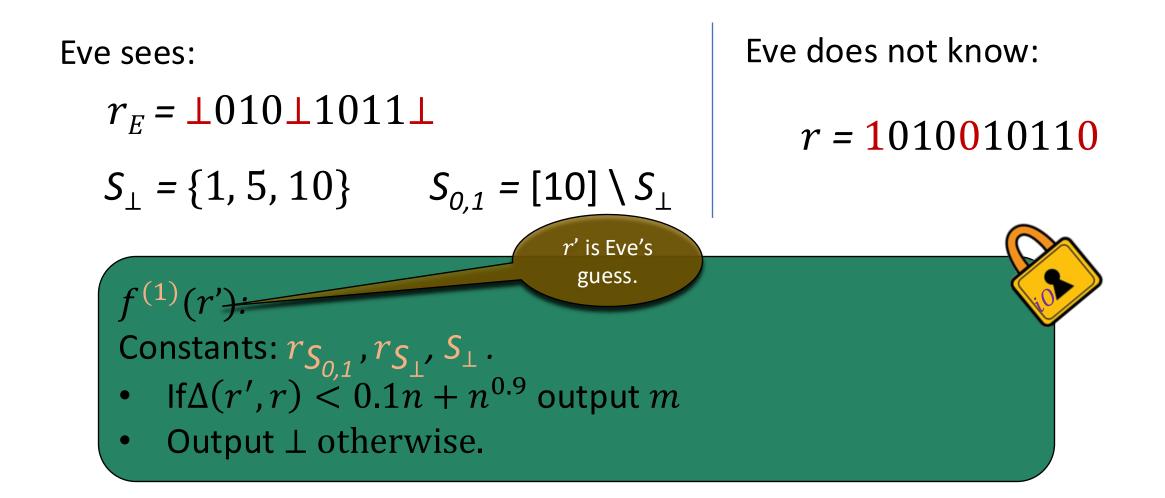
- If $\Delta(r', r) < 0.1n + n^{0.9}$ output *m*
- Output \perp otherwise.

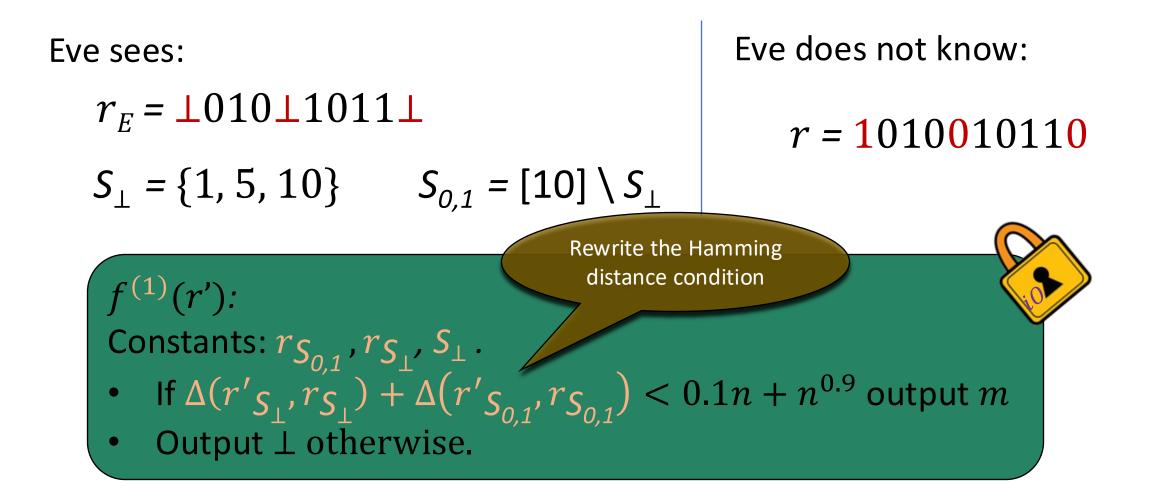


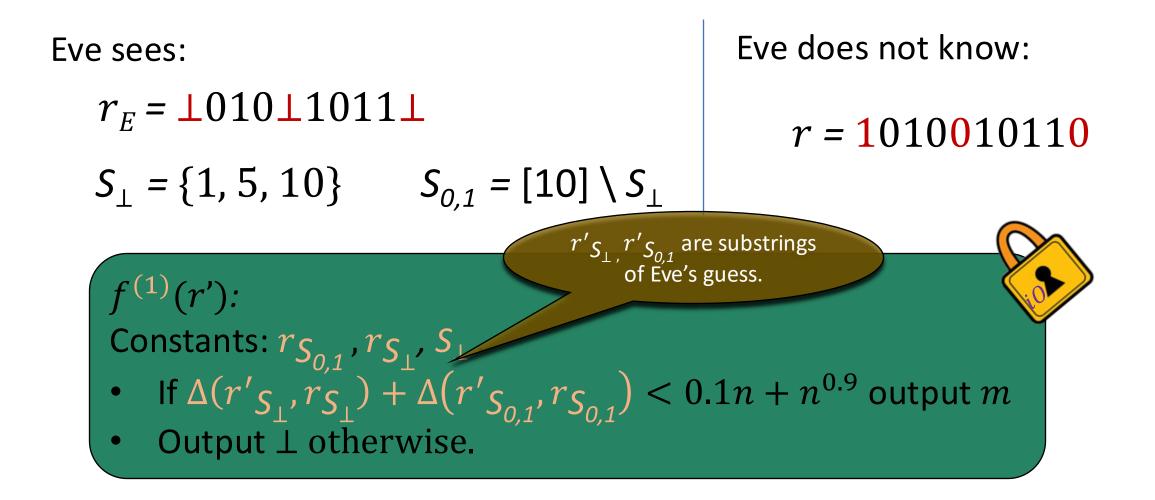


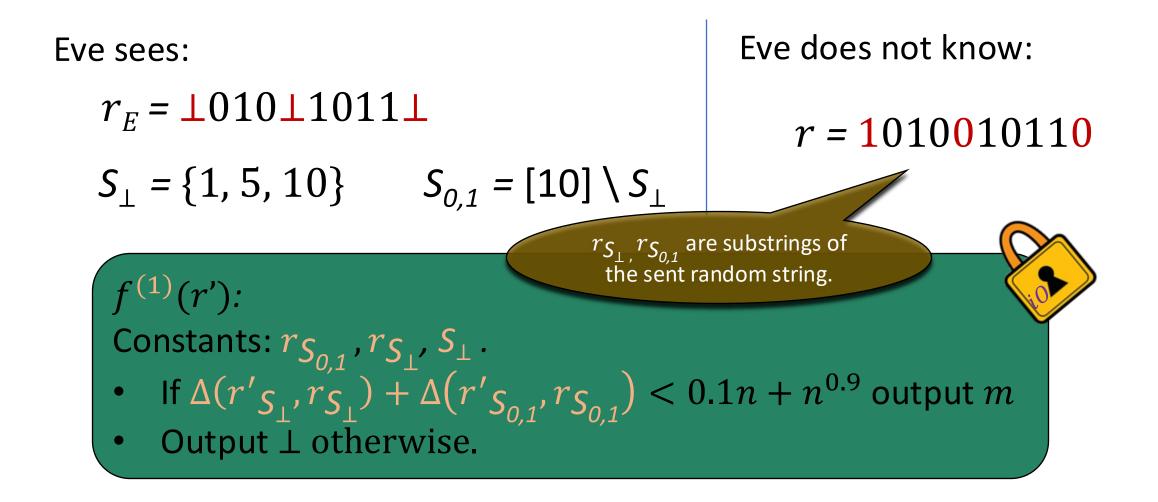
Security: An Indistinguishable Viewpoint

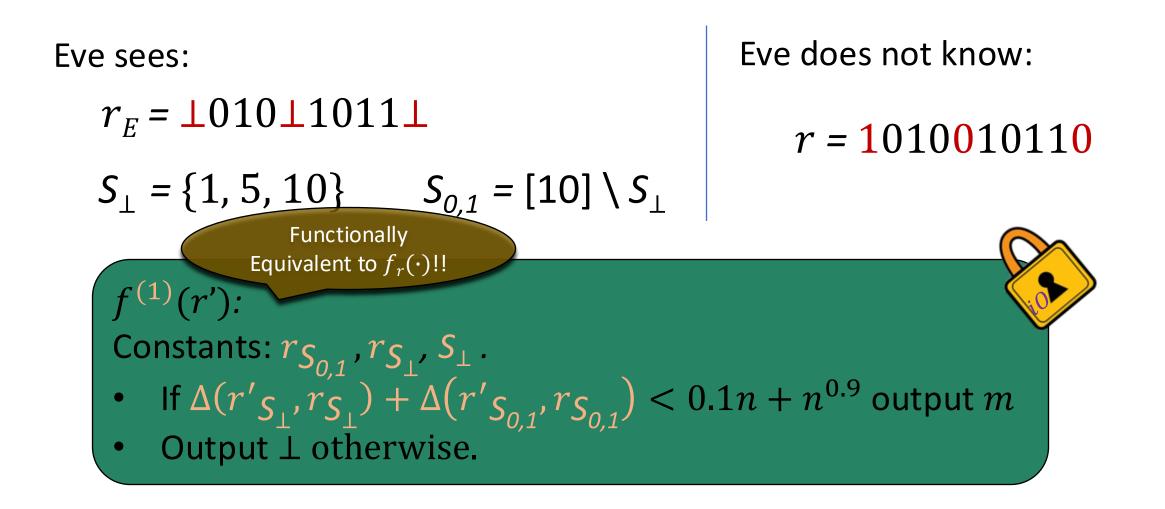


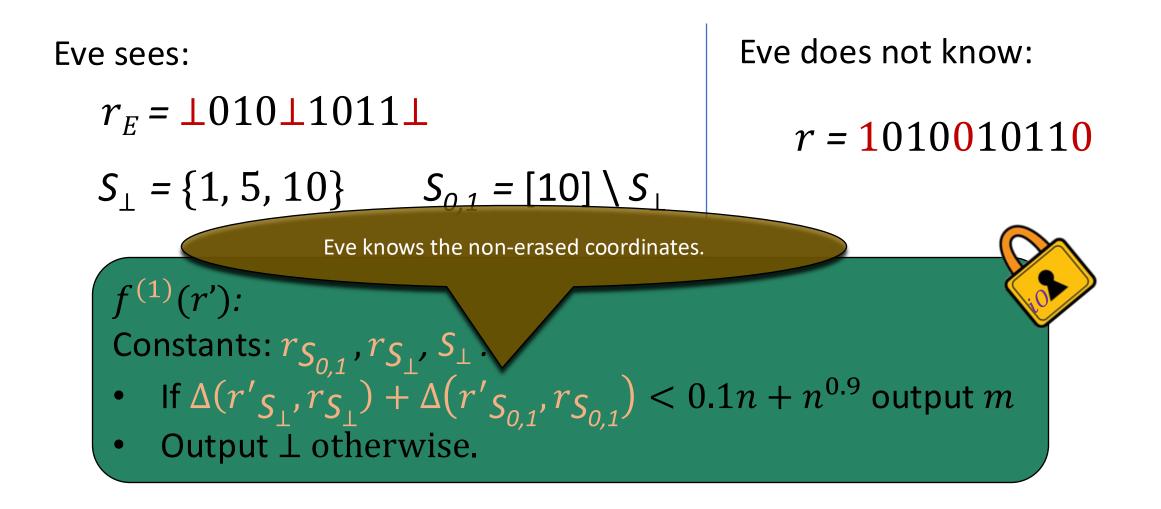


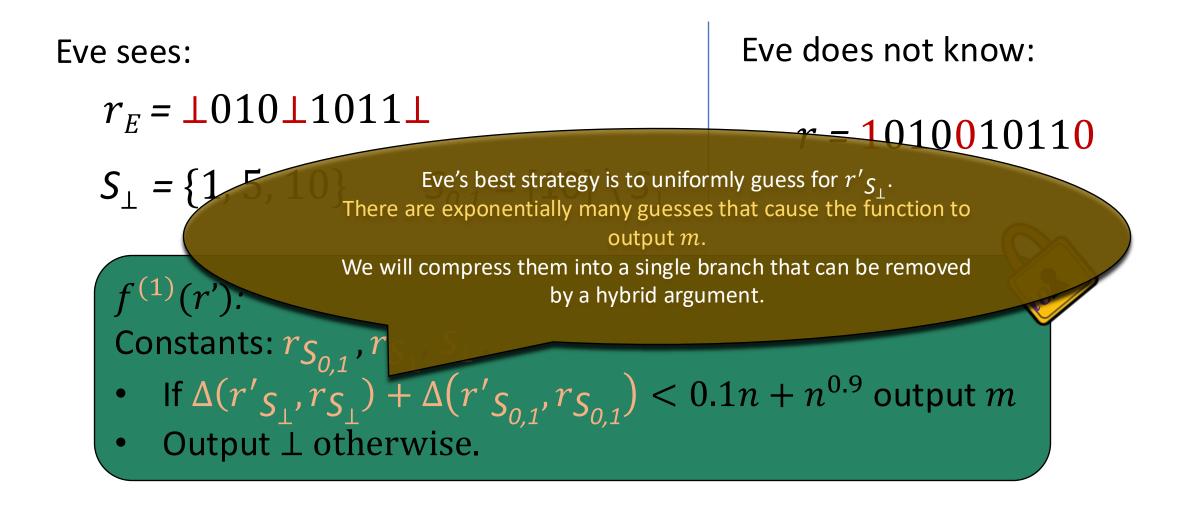












Eve sees:

 $r_E = \bot 010 \bot 1011 \bot$ $S_{\bot} = \{1, 5, 10\}$ $S_{0.1} = [10] \setminus S_{\bot}$ Eve does not know:

$$r = 1010010110$$

 $f^{(1)}(r')$: Constants: $r_{S_{0,1}}, r_{S_{\pm}}, S_{\perp}$.

• If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m

• Output $\overline{\perp}$ otherwise.

Eve sees:

Eve does not know:

 $r_F = \perp 010 \perp 1011 \perp$ r = 1010010110 $S_{\perp} = \{1,$ Replace with $SCPRG_{\varepsilon}(r_{S_1})$ for some choice of ε dependent on degradation condition. Here, $\varepsilon = \frac{1}{12}$. $f^{(1)}(r')$: Constants: $r_{S_{0,1}}, r_{S_{\pm}}, S_{\perp}$. If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output mOutput $\overline{\perp}$ otherwise.

Eve sees:

Eve does not know:

 $r_F = \perp 010 \perp 1011 \perp$

r = 1010010110

Parameter ε , dependent on degradation condition, is set so that Eve is unable to recover.

Here, $\varepsilon = \frac{1}{12}$.

 $f^{(2)}(r')$:

 $S_{\perp} = \{1, 1, 1\}$

- Constants: $r_{S_{0,1}}$, $SCPRG_{\varepsilon}(r_{S_{\perp}})$, S_{\perp} . Let $\alpha \coloneqq SCPRG_{\varepsilon}$. $Recover(SCPRG_{\varepsilon}(r_{S_{\perp}}), r'_{S_{\perp}})$.
- If $SCPRG_{\varepsilon}(\alpha) \neq SCPRG_{\varepsilon}(r_{S_{\perp}})$, then output \perp .
- Otherwise, set $r_{S_1} \leftarrow \alpha$.
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \dot{\Delta}(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output $\overline{\perp}$ otherwise.

Eve sees:

 $f^{(2)}(r')$:

Eve does not know:

r = 1010010110

 $S_{\perp} = \{1, 5, 10\}$ $S_{0,1} = [10] \setminus S_{\perp}$

From Eve's point of view, $r_{S_{\perp}}$ is an unknown uniform random string.

Constants: $r_{S_{0,1}}$, $SCPRG_{\varepsilon}(r_{S_{\perp}})$, S_{\perp} .

- Let $\alpha \coloneqq SCPRG_{\varepsilon}$. $Recover(SCPRG_{\varepsilon}(r_{S_{\perp}}), r'_{S_{\perp}})$.
- If $SCPRG_{\varepsilon}(\alpha) \neq SCPRG_{\varepsilon}(r_{S_{\perp}})$, then output \perp .
- Otherwise, set $r_{S_1} \leftarrow \alpha$.

 $r_F = \perp 010 \perp 1011 \perp$

- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \overline{\Delta}(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output $\overline{\perp}$ otherwise.

Eve sees:

 $f^{(3)}(r')$:

Eve does not know:

r = 1010010110

 $S_{\perp} = \{1, 5, 10\}$ $S_{0,1} = [10] \setminus S_{\perp}$

Can therefore apply pseudorandomness property.

Constants: $r_{S_{0,1}}$, R, S_{\perp} .

- Let $\alpha \coloneqq SCPRG_{\varepsilon}$. $Recover(R, r'_{S_{\perp}})$.
- If $SCPRG_{\varepsilon}(\alpha) \neq R$, then output \bot .
- Otherwise, set $r_{S_1} \leftarrow \alpha$.

 $r_F = \perp 010 \perp 1011 \perp$

- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \overline{\Delta}(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \bot otherwise.

Eve sees:

Eve does not know:

 $r_E = \bot 010 \bot 1011 \bot$

r = 1010010110

With overwhelming probability *R* is not in the range of the *SCPRG*, so will be functionally equivalent to null circuit.

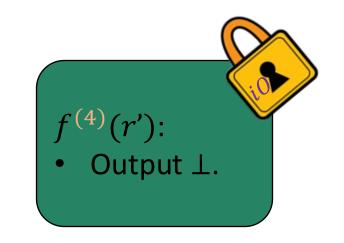
 $f^{(3)}(r')$:

 $S_{\perp} = \{1, 2\}$

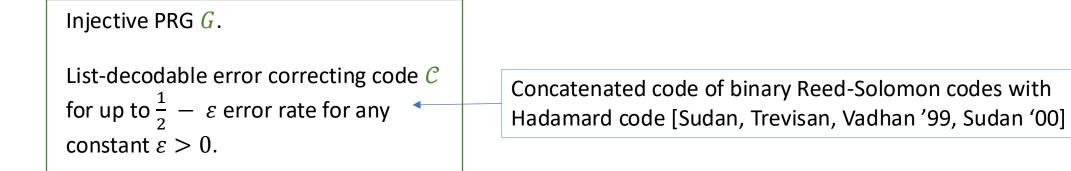
Constants: $r_{S_{0,1}}$, R, S_{\perp} .

- Let $\alpha \coloneqq SCPRG_{\varepsilon}.R_{\varepsilon}$ over $(R,r'_{S_{\perp}}).$
- If $SCPRG_{\varepsilon}(\alpha) \neq R$, then output \bot .
- Otherwise, set $r_{S_1} \leftarrow \alpha$.
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \overline{\Delta}(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \bot otherwise.

End of the Security Proof: Null Circuit

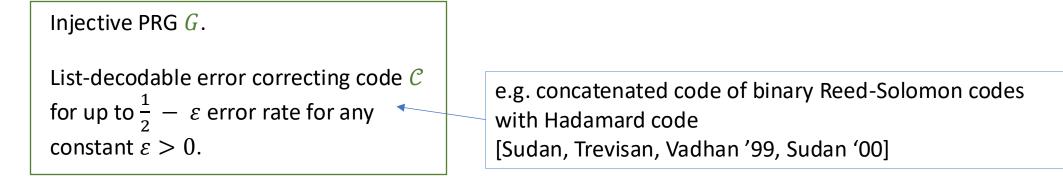


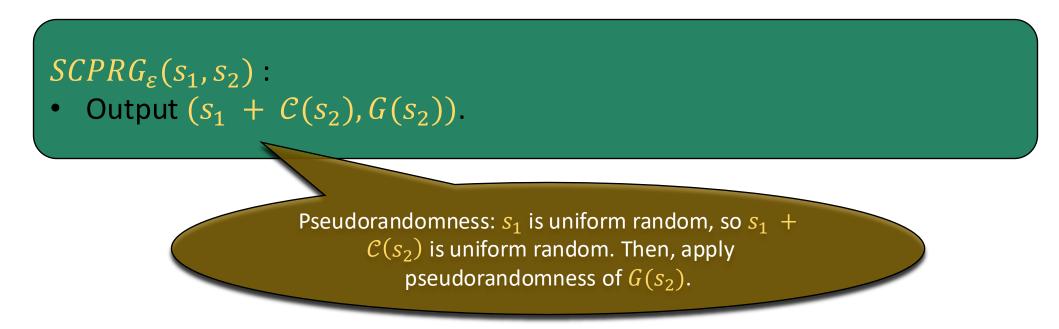
"Code Offset" construction of SCPRG



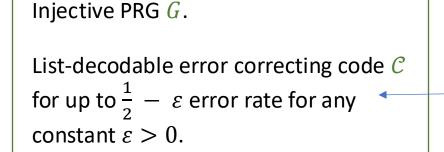
SCPRG_{$$\varepsilon$$}(s₁, s₂):
• Output (s₁ + $C(s_2), G(s_2)$).

"Code Offset" construction of SCPRG





"Code Offset" construction of SCPRG



e.g. concatenated code of binary Reed-Solomon codes with Hadamard code [Sudan, Trevisan, Vadhan '99, Sudan '00]

SCPRG_{ε}(s₁, s₂): • Output (s₁ + $C(s_2), G(s_2)$).

Self-correction: Can show, if $s_1', s'_2 \approx s_1, s_2$ and for appropriate lengths of s_1 and s_2 , then $s_1' \approx s_1$.

Therefore, if $s_1', s'_2 \approx s_1, s_2$ then can recover a polynomial size list containing s_2 from $s_1 + C(s_2)$.

Use $G(s_2)$ iterate over list to find s_2 , then recover s_1 .

Recap

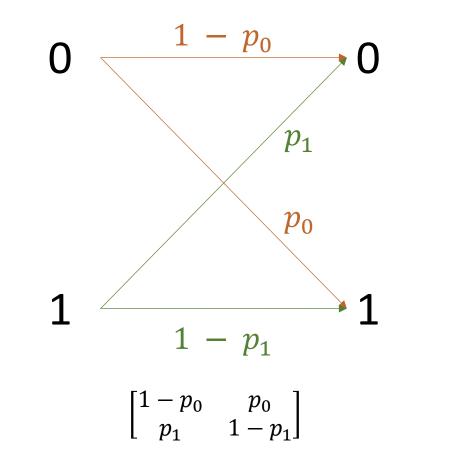
We sketched the construction and security proof for a computational wiretap coding scheme for the non-degraded (*BSC*, *BEC*) case via *iO* & injective PRG.

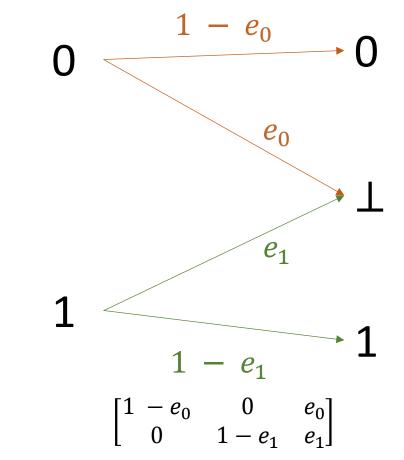
Theorem: Assuming the existence of indistinguishability obfuscation (*iO*) and injective PRGs, there exists a computational wiretap coding scheme for any pair of non-degraded **binary-input** channels (*ChB*, *ChE*).

1. The given construction idea easily extends to the non-degraded (*BAC*, *BAEC*) setting.

Theorem: Assuming the existence of indistinguishability obfuscation (*iO*) and injective PRGs, there exists a computational wiretap coding scheme for any pair of non-degraded **binary-input** channels (*ChB*, *ChE*).

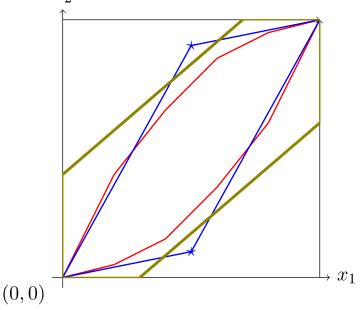
1. The given construction idea easily extends to the non-degraded (BAC, BAEC) setting.





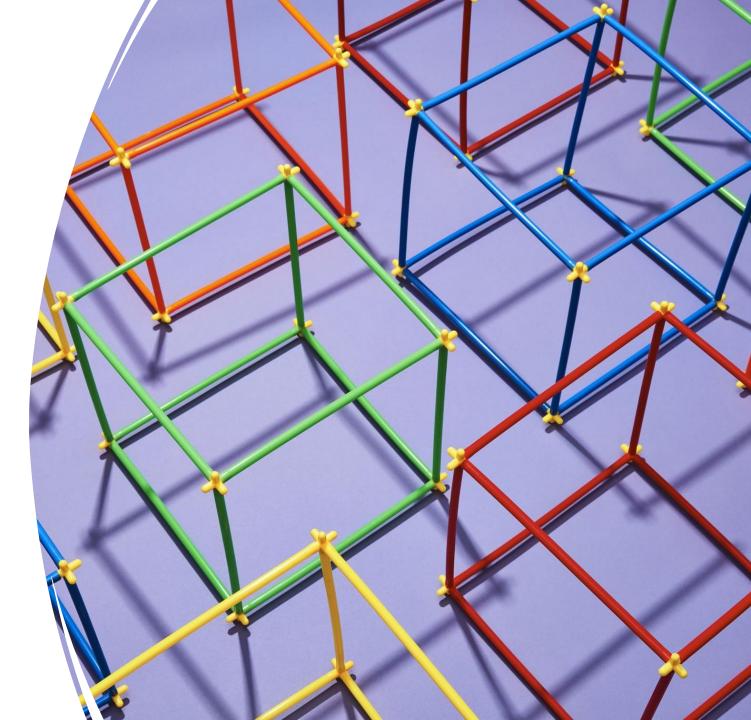
Theorem: Assuming the existence of indistinguishability obfuscation (iO) and injective PRGs, there exists a computational wiretap coding scheme for any pair of non-degraded **binary-input** channels (ChB, ChE).

- 1. The given construction idea easily extends to the non-degraded (*BAC*, *BAEC*) setting.
- 2. The case of every non-degraded binary-input channel pair (ChB, ChE) reduces to (1).



Some Open Directions

- Expanding construction beyond binary-input channels.
 - Characterize degradation for dimension three and beyond.
- Realizing computational wiretap coding from simpler cryptographic primitives or directly from hardness assumptions like LWE.
- Addressing the asterisk* in the initial riddle: Can we derandomize the encoding?



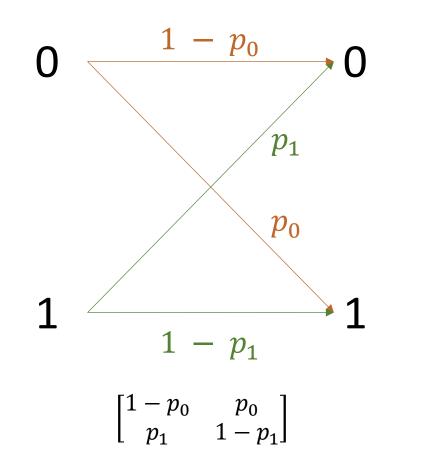
Thank you !

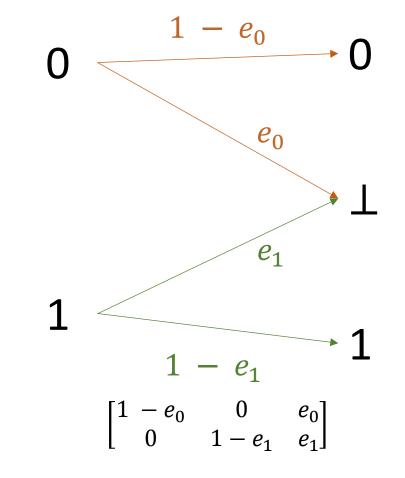
Appendix: The BAC/BAEC Case and General Binary-Input Case

Asymmetric Binary Channels

Binary Asymmetric Channel (BAC)

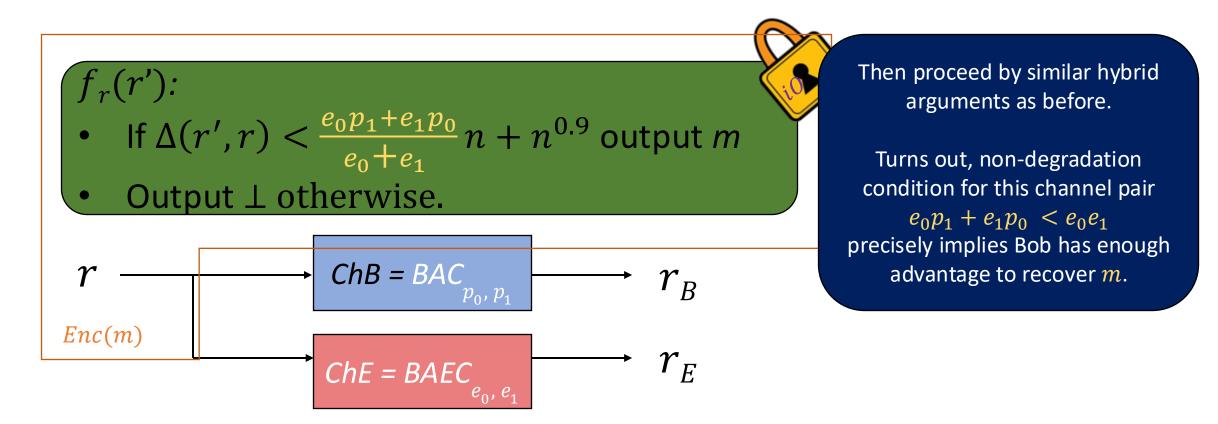
Binary Asymmetric Erasure Channel (BAEC)





$$ChB = BAC_{p_0, p_1}, ChE = BAEC_{e_0, e_1}$$

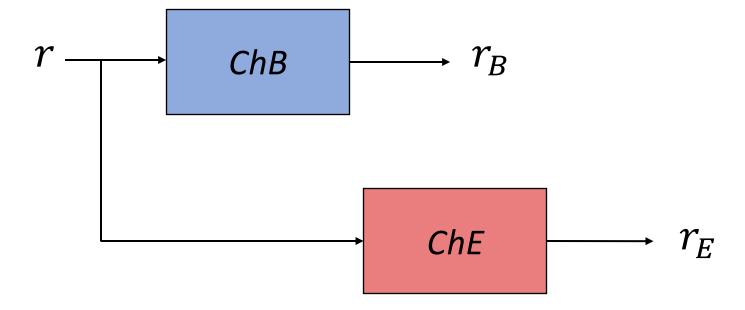
Construction: Same as before, except initial distribution is such that from Eve's view, each erasure equally likely to have been 0 or 1.



Pairs of Binary-input Channels Reduce to the BAC/BAEC Case

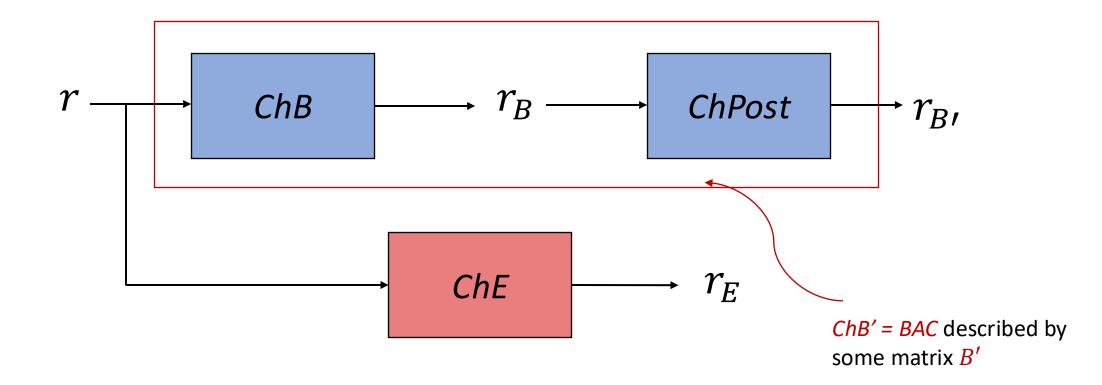
Pair of Arbitrary Binary Input Channels

Consider ($B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) s.t. B not a degradation of E.



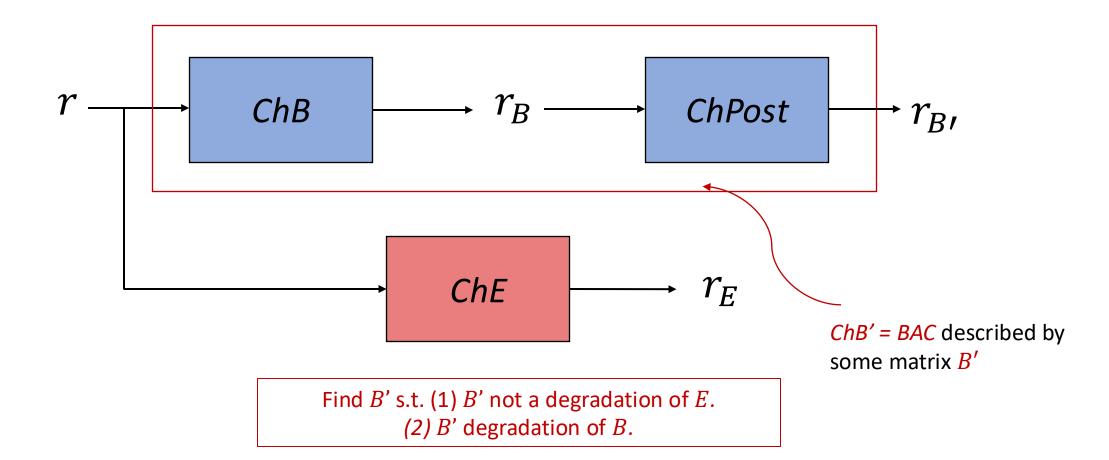
Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob's Output Alphabet

Consider $(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) s.t. *B* not a degradation of *E*.



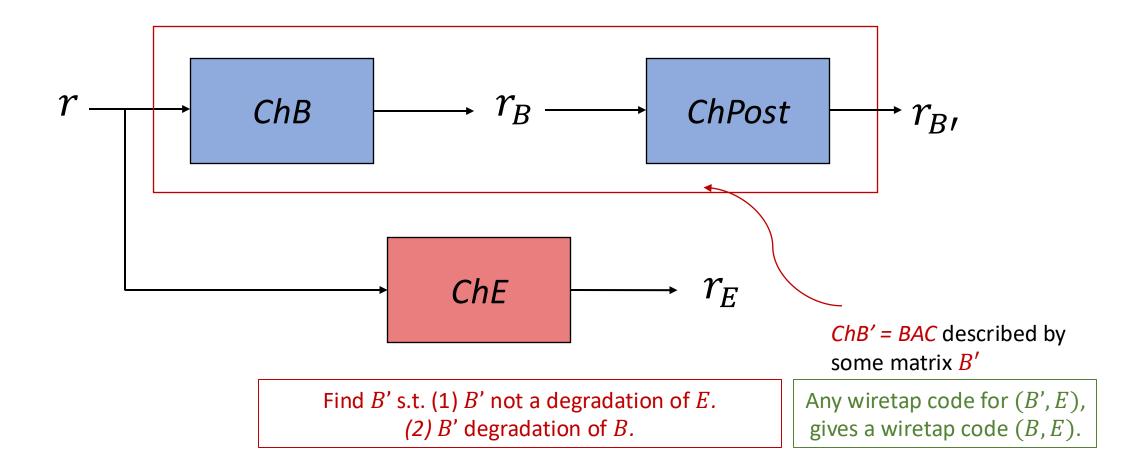
Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob's Output Alphabet

Consider $(B' = \begin{bmatrix} u'_{11} & u'_{12} \\ u'_{21} & u'_{22} \end{bmatrix}$, $E = \begin{bmatrix} v_{11} & \cdots & v_{1n_E} \\ v_{21} & \cdots & v_{2n_E} \end{bmatrix}$) s.t. B not a degradation of E.



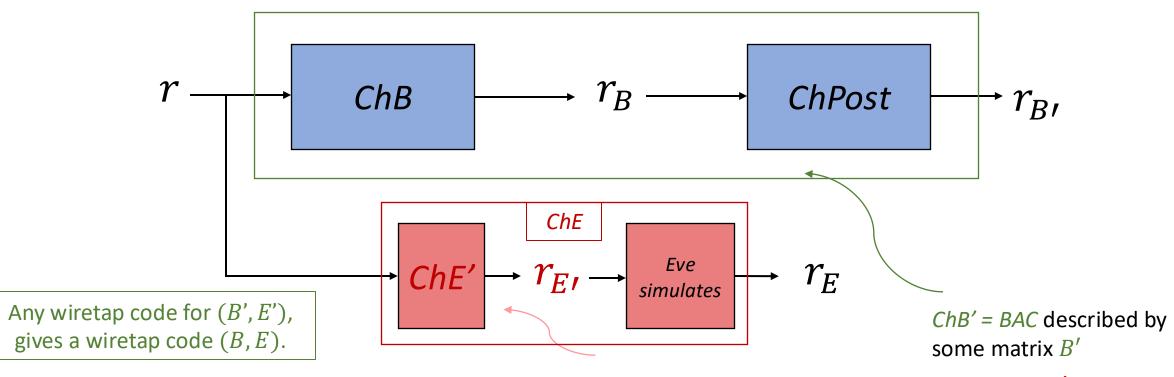
Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob's Output Alphabet

Consider $(B' = \begin{bmatrix} u'_{11} & u'_{12} \\ u'_{21} & u'_{22} \end{bmatrix}$, $E = \begin{bmatrix} v_{11} & \cdots & v_{1n_E} \\ v_{21} & \cdots & v_{2n_E} \end{bmatrix}$) s.t. B not a degradation of E.



Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Simulating ChE with a BAEC

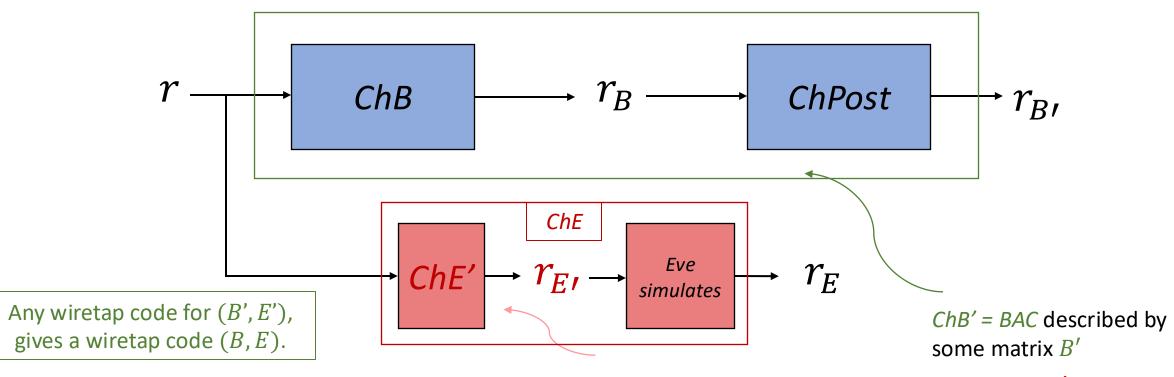
Consider $(B' = \begin{bmatrix} u'_{11} & u'_{12} \\ u'_{21} & u'_{22} \end{bmatrix}$, $E = \begin{bmatrix} v_{11} & \cdots & v_{1n_E} \\ v_{21} & \cdots & v_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B') \not\subseteq \mathcal{P}(E)$, $\mathcal{P}(B') \subseteq \mathcal{P}(B)$.



Imagine that Eve instead receives an output through ChE' = BAEC described by some matrix E', effectively giving Eve even more information, but hopefully not enough to simulate B'!

Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Simulating ChE with a BAEC

Consider $(B' = \begin{bmatrix} u'_{11} & u'_{12} \\ u'_{21} & u'_{22} \end{bmatrix}$, $E = \begin{bmatrix} v_{11} & \cdots & v_{1n_E} \\ v_{21} & \cdots & v_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B') \not\subseteq \mathcal{P}(E)$, $\mathcal{P}(B') \subseteq \mathcal{P}(B)$.



Imagine that Eve instead receives an output through ChE' = BAEC described by some matrix E', effectively giving Eve even more information, but hopefully not enough to simulate B'!

Finding BAEC E' via Polytope Formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A) = \{Av : 0 \le v \le 1\}.$

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A) = \{Av : 0 \le v \le 1\}.$

Theorem: Let $B \in \mathbb{R}^{2 \times n_B}$ and $E \in \mathbb{R}^{2 \times n_E}$ be arbitrary row-stochastic matrices. Then, $\underline{B \neq E \cdot S}$ for every row stochastic matrix \underline{S} if and only if $\mathcal{P}(B) \nsubseteq \mathcal{P}(E)$.

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A) = \{Av : 0 \le v \le 1\}.$

Theorem: Let $B \in \mathbb{R}^{2 \times n_B}$ and $E \in \mathbb{R}^{2 \times n_E}$ be arbitrary row-stochastic matrices. Then, ChB is not a degradation of ChE if and only if $\mathcal{P}(B) \nsubseteq \mathcal{P}(E)$.

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

• $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.

In the interest of time, we will not If r sketch the proof. Expli

If row count > 2, then this is false. Explicit counterexample for case of 3.

Theorem: Let $B \in \mathbb{R}^{2 \times n_B}$ and $E \in \mathbb{R}^{2 \times n_E}$ be arbitrary row-stochastic matrices. Then, ChB is not a degradation of ChE if and only if $\mathcal{P}(B) \nsubseteq \mathcal{P}(E)$.

Binary Asymmetric Erasure Channel (BAEC)

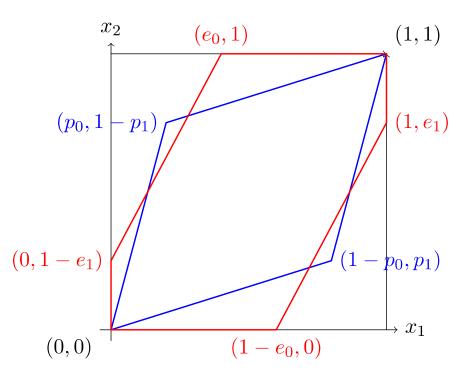
Polytope Example

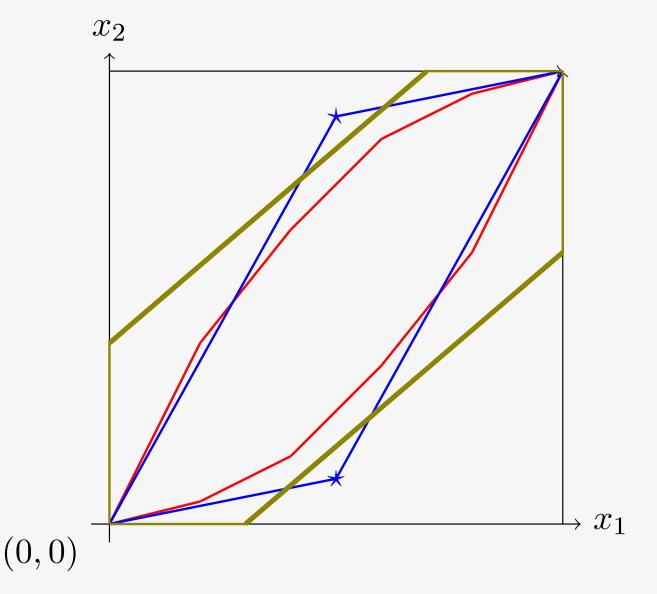
 $\begin{bmatrix} 1 - p_0 & p_0 \\ p_1 & 1 - p_1 \end{bmatrix} \begin{bmatrix} 1 - e_0 & 0 & e_0 \\ 0 & 1 - e_1 & e_1 \end{bmatrix}$

Binary Asymmetric Channel (BAC)

The red polytope corresponds to the BAEC.

Since the blue polytope is **not** contained in the red polytope, the BAC channel is **not** a degradation of the BAEC channel.



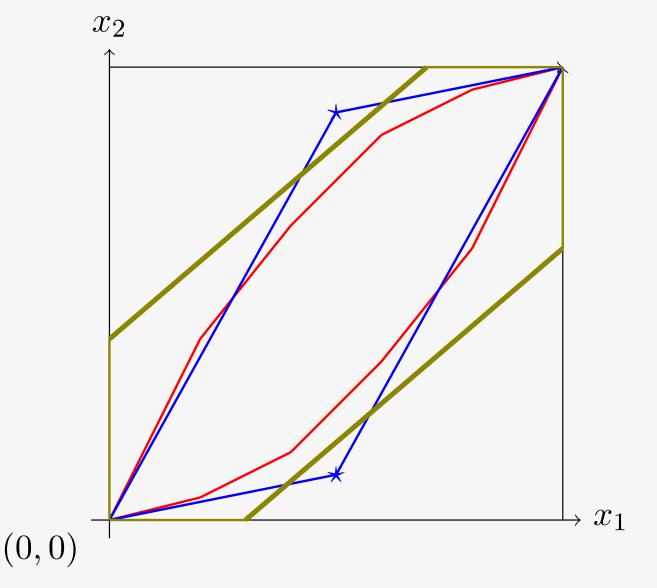


Reducing Eve's Channel to a BAEC

The blue polytope corresponds to the BAC.

The red polytope corresponds to some channel ChE.

Since the blue polytope is **not** contained in the red polytope, the BAC channel is **not** a degradation of ChE.



Reducing Eve's Channel to a BAEC

Apply the strict separating hyperplane theorem!

Take an extreme point of the BAC **not** inside the ChE polytope and separate it from the ChE polytope.

Olive polytope is a BAEC channel s.t. (1) ChE is a degradation and (2) ChB is not a degradation.

Can find this polytope efficiently.