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Binary string 𝑥

𝑥

Random linear code 𝒞

𝒞(𝑥) 𝐵𝑆𝐶0.1

𝐵𝐸𝐶0.3𝒞(𝑥)

𝒞(𝑥)

𝒞(𝑥)

For the right choice of 
parameters, Gaussian 
elimination recovers 𝑥.

Hard to decode: Learning Parity 
with Noise (LPN) problem with 
constant error probability.

Teaser: Curious Coding Theory Question
Do there exist error-correcting codes that satisfy the following?

1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Until 2022, no such codes known to satisfy both.

Ishai, Korb, Lou, Sahai ‘22: Yes*, in the ideal obfuscation model (or non-standard 
VBB obfuscation assumptions)!

This Work: Yes*, assuming well-studied hardness assumptions!



General Setting: 
Wiretap Channel [Wyn75]
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ChB

ChE

𝒳𝑛 𝒴𝑛

𝒵𝑛

ℳ ℳ

Alice Bob

Eve

Encode Decode

Goal: Alice wants to send a message to Bob without Eve learning it.

➢ Discrete memoryless 
channels (DMCs).

➢ Non-interactive.
➢ No shared secrets.

More General Setting: 
Wiretap Channel [Wyn75]



For what pairs of channels do 
wiretap coding schemes exist?



Intuitive Impossibility for Degraded Pairs

Impossible for channel pair 𝐵𝑆𝐶0.1, 𝐵𝐸𝐶0.2 . Eve can perfectly 
simulate 𝐵𝑆𝐶0.1’s output distribution using an output of 𝐵𝐸𝐶0.2.

𝐵𝐸𝐶0.2𝒳 𝒵
Guess 

random bits 
for erasures

𝒴

𝐵𝑆𝐶0.1



Intuitive Impossibility for Degraded Pairs

Impossible for any channel pair 𝐶ℎ𝐵, 𝐶ℎ𝐸  where Eve can perfectly 
simulate 𝐶ℎ𝐵’s output distribution using an output of 𝐶ℎ𝐸.
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𝐶ℎ𝐵



Intuitive Impossibility for Degraded Pairs

Impossible for any channel pair 𝐶ℎ𝐵, 𝐶ℎ𝐸  where Eve can perfectly 
simulate 𝐶ℎ𝐵’s output distribution using an output of 𝐶ℎ𝐸.

Degradation: 𝐶ℎ𝐵 is a degradation of 𝐶ℎ𝐸 if and only if Eve can 
perfectly simulate 𝐶ℎ𝐵 using 𝐶ℎ𝐸.

ChE𝒳 𝒵 S 𝒴

𝐶ℎ𝐵



Existence of Wiretap Coding Schemes

None for (𝐶ℎ𝐵, 𝐶ℎ𝐸) where 𝐶ℎ𝐵 is a 
degradation of 𝐶ℎ𝐸.

Do there exist wiretap coding schemes 
for non-degraded channel pairs 

(𝐶ℎ𝐵, 𝐶ℎ𝐸)? 

?x
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None for (𝐶ℎ𝐵, 𝐶ℎ𝐸) where 𝐶ℎ𝐵 is a 
degradation of 𝐶ℎ𝐸.

Csiszár, Korner ‘78: There are non-
degraded channel pairs that do not have 
statistical wiretap coding schemes.

Non-degraded pairs 
with statistical 
wiretap coding 
schemes

Degraded

Can cryptography enable wiretap coding schemes for a larger 
class of channel pairs?



Existence of Wiretap Coding Schemes

None for (𝐶ℎ𝐵, 𝐶ℎ𝐸) where 𝐶ℎ𝐵 is a 
degradation of 𝐶ℎ𝐸.

Ishai, Korb, Lou, Sahai ‘22: There exists a 
computational wiretap coding scheme for 
all non-degraded channel pairs in the Ideal 
Obfuscation Model (or non-std. VBB 
obfuscation).

Non-degraded pairs 
with computational 
wiretap coding 
schemes with ideal 
obfuscation.

Degraded

Csiszár, Korner ‘78: There are non-
degraded channel pairs that do not have 
statistical wiretap coding schemes.

(𝐵𝑆𝐶0.1, 𝐵𝐸𝐶0.3)



Can we obtain computational 
wiretap coding schemes from 
well-studied assumptions?



Our Main Result: YES

Theorem: Assuming the existence of indistinguishability obfuscation (𝑖𝑂) 
and injective PRGs, there exists a computational wiretap coding scheme 
for any pair of non-degraded binary-input channels (𝐶ℎ𝐵, 𝐶ℎ𝐸). 

Non-degraded binary-
input channel pairs 
with computational 
wiretap coding 
schemes from well-
studied assumptions

Non-degraded binary-
input

Degraded

Other non-degraded 
channel pairs. Comp. 
wiretap via idealized 
obfuscation.

(𝐵𝑆𝐶0.1, 𝐵𝐸𝐶0.3)

Solves* the teaser:



Our Techniques

1. Using iO and injective PRGs, we construct a Hamming ball 
obfuscator.
➢Construction uses a new gadget: PRG with Self-Correction.

➢Using this, we build computational wiretap coding schemes for binary 
asymmetric channels (BAC) and binary asymmetric erasure channels (BAEC).

2. We introduce a polytope characterization of degradation.
➢ Using this polytope characterization, we reduce the problem of constructing 

a computational wiretap coding scheme for any non-degraded binary-input 
channel pair to constructing one for (BAC, BAEC). 



Focus of this talk:
A computational wiretap coding 
scheme from 𝑖𝑂 for 
(ChB = BSC0.1, ChE = BEC0.3)
*Construction idea easily extends to the non-degraded (BAC, BAEC) setting. 

**See paper or slide appendix for extension to all non-degraded binary-input.



Indistinguishability Obfuscation (𝑖𝑂) [BGIRSVY01]
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Indistinguishability Obfuscation (𝑖𝑂) [BGIRSVY01]

≡ ≈𝑐𝑜𝑚𝑝

𝑖𝑂

𝑖𝑂

𝐶0

𝐶1

መ𝐶0

መ𝐶1

Now known from well-studied hardness assumptions !! [JLS21]



New Gadget: 
PRG with Self-Correction (SCPRG)
1. Polynomial Stretch & Pseudorandomness

2. 𝜀-Self-Correction

Seed

SC-PRG(Seed) Random≈𝑐𝑜𝑚𝑝

SC-PRG(Seed)

Seed’

where Seed’ agrees with Seed 

on at least 
1

2
+ 𝜀 fraction of bits, Seed

Can efficiently recover



New Gadget: 
PRG with Self-Correction (SCPRG)
1. Polynomial Stretch & Pseudorandomness

2. 𝜀-Self-Correction (recovery works w.h.p. over choices of seeds)

Seed

SC-PRG(Seed) Random≈𝑐𝑜𝑚𝑝

SC-PRG(Seed)

Seed’

where Seed’ agrees with Seed 

on at least 
1

2
+ 𝜀 fraction of bits, Seed

Can efficiently recover

For this talk, 𝜀 =
1

12
. In general, some constant.



New Gadget: 
PRG with Self-Correction (SCPRG)
1. Polynomial Stretch & Pseudorandomness

2. 𝜀-Self-Correction

Seed

SC-PRG(Seed) Random≈𝑐𝑜𝑚𝑝

SC-PRG(Seed)

Seed’

where Seed’ agrees with Seed 

on at least 
1

2
+ 𝜀 fraction of bits, Seed

Can efficiently recover

Bogdanov, Qiao ‘12: Goldreich PRG, even with linear stretch, is a SCPRG.



New Gadget: 
PRG with Self-Correction (SCPRG)
1. Polynomial Stretch & Pseudorandomness

2. 𝜀-Self-Correction

Seed

SC-PRG(Seed) Random≈𝑐𝑜𝑚𝑝

SC-PRG(Seed)

Seed’

where Seed’ agrees with Seed 

on at least 
1

2
+ 𝜀 fraction of bits, Seed

Can efficiently recover

Our Work: Injective SC-PRG from any injective PRG.
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Correctness: 
𝑓𝑟(𝑟𝐵) = 𝑚 with high 

probability
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• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output m
• Output ⊥ otherwise.

ChB = BSC0.1, ChE = BEC0.3

ChB = BSC0.1

ChE = BEC0.3

𝑟 𝑟𝐵

𝑟𝐸

Eve’s best guess for 𝑟’ has ≈ 0.15 error rate.

If we were using an ideal obfuscation, then 𝑟 and 𝑚 are hidden.

Correctness: 
𝑓𝑟(𝑟𝐵) = 𝑚 with high 

probability

Using ideal obfuscation [IKLS22]: Send a uniform random 𝑟 ∈ 0,1 𝑛 across the 
wiretap channel. Then, send an obfuscation of 𝑓𝑟, encoded to Bob’s channel.



𝐸𝑛𝑐(𝑚)

𝑓𝑟(𝑟’): 
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output m
• Output ⊥ otherwise.
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ChB = BSC0.1

ChE = BEC0.3

𝑟 𝑟𝐵

𝑟𝐸

Security: Why does 𝑖𝑂(𝑓𝑟) hide 𝑚 or 𝑟?

Construction: Send a uniform random 𝑟 ∈ 0,1 𝑛 across the wiretap 
channel. Then, send an 𝑖𝑂 of 𝑓𝑟, encoded to Bob’s channel.

Correctness: 
𝑓𝑟(𝑟𝐵) = 𝑚 with high 

probability



Security: What Does Eve See?

𝑟𝐸  = ⊥010⊥1011⊥  𝑟 = 1010010110  

Eve does not know:Eve sees:

𝑓𝑟(𝑟’): 
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output 𝑚
• Output ⊥ otherwise.



𝑓𝑟(𝑟’): 
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output 𝑚
• Output ⊥ otherwise.

Security: What Does Eve See?

𝑟𝐸  = ⊥010⊥1011⊥  𝑟 = 1010010110  

Eve does not know:Eve sees:
Goal: Use a hybrid argument to show that 

this circuit is indistinguishable from the null 
circuit.

Problem: There are exponentially many 
points in the Hamming ball!
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Security: What Does Eve See?

𝑟𝐸  = ⊥010⊥1011⊥  𝑟 = 1010010110  

Eve does not know:Eve sees:

𝑓𝑟(𝑟’): 
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output m
• Output ⊥ otherwise.

Critical observation: In intermediate 
hybrids, this circuit can depend on 

the actual received string 𝑟𝐸.

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥



𝑓(1)(𝑟’):
Constants: 𝑟S0,1 

, 𝑟S⊥
, S⊥ .

• If∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output 𝑚
• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥

Split the hardcoded 𝑟 into 
two substrings depending 

on S⊥ 



𝑓(1)(𝑟’):
Constants: 𝑟S0,1 

, 𝑟S⊥
, S⊥ .

• If∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output 𝑚
• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥

𝑟’ is Eve’s 
guess.



𝑓(1)(𝑟’):
Constants: 𝑟S0,1 

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥

Rewrite the Hamming 
distance condition



𝑓(1)(𝑟’):
Constants: 𝑟S0,1 

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥

𝑟′
S⊥  ,

𝑟′
S0,1

 are substrings 

of Eve’s guess.



𝑓(1)(𝑟’):
Constants: 𝑟S0,1 

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥

𝑟S⊥  ,
𝑟S0,1

 are substrings of 

the sent random string.



Security: An Indistinguishable Viewpoint

𝑟𝐸  = ⊥010⊥1011⊥  

𝑓(1)(𝑟’):
Constants: 𝑟S0,1 

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥
Functionally 

Equivalent to 𝑓𝑟(∙)!!



Security: An Indistinguishable Viewpoint

𝑟𝐸  = ⊥010⊥1011⊥  

𝑓(1)(𝑟’):
Constants: 𝑟S0,1 

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥

Eve knows the non-erased coordinates. 



Security: An Indistinguishable Viewpoint

𝑟𝐸  = ⊥010⊥1011⊥  

𝑓(1)(𝑟’):
Constants: 𝑟S0,1 

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥
Eve’s best strategy is to uniformly guess for 𝑟′

S⊥
. 

There are exponentially many guesses that cause the function to 
output 𝑚. 

We will compress them into a single branch that can be removed 
by a hybrid argument.



Using injective length-tripling SCPRGs

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥. 𝐺(𝛼), 𝑧

• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥
 to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥. 
• Recover 𝑟S⊥

← 𝒞 𝛼 + 𝑧. 

•  If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥



Using injective length-tripling SCPRGs

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥. 𝐺(𝛼), 𝑧

• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥
 to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥. 
• Recover 𝑟S⊥

← 𝒞 𝛼 + 𝑧. 

•  If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥Replace with 𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥
) for some choice of 𝜀 

dependent on degradation condition. Here, 𝜀 =
1

12
. 



Using injective length-tripling SCPRGs

𝑓(2)(𝑟’):
Constants: 𝑟S0,1

, 𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥
), S⊥. 𝐺(𝛼), 𝑧

• Let 𝛼 ≔  𝑆𝐶𝑃𝑅𝐺𝜀 . 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 𝑆𝐶𝑃𝑅𝐺𝜀 𝑟𝑆⊥
, 𝑟’𝑆⊥

. 

• If 𝑆𝐶𝑃𝑅𝐺𝜀 𝛼 ≠  𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥
), then output ⊥ .

• Otherwise, set 𝑟S⊥  
← 𝛼.

•  If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥
Parameter 𝜀 , dependent on degradation 

condition, is set so that Eve is unable to recover. 

Here, 𝜀 =
1

12
.



Using injective length-tripling SCPRGs

𝑓(2)(𝑟’):
Constants: 𝑟S0,1

, 𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥
), S⊥.

• Let 𝛼 ≔  𝑆𝐶𝑃𝑅𝐺𝜀 . 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 𝑆𝐶𝑃𝑅𝐺𝜀 𝑟𝑆⊥
, 𝑟’𝑆⊥

.
• If 𝑆𝐶𝑃𝑅𝐺𝜀 𝛼 ≠  𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥

), then output ⊥ .

• Otherwise, set 𝑟S⊥  
← 𝛼.

•  If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥
From Eve’s point of view, 𝑟𝑆⊥

 is an unknown 

uniform random string.



Using injective length-tripling SCPRGs

𝑓(3)(𝑟’):
Constants: 𝑟S0,1

, 𝑅, S⊥.

• Let 𝛼 ≔  𝑆𝐶𝑃𝑅𝐺𝜀 . 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 𝑅, 𝑟’𝑆⊥
.

• If 𝑆𝐶𝑃𝑅𝐺𝜀 𝛼 ≠ 𝑅, then output ⊥.
• Otherwise, set 𝑟S⊥  

← 𝛼.

•  If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥

Can therefore apply pseudorandomness property.



Using injective length-tripling SCPRGs

𝑓(3)(𝑟’):
Constants: 𝑟S0,1

, 𝑅, S⊥. 

• Let 𝛼 ≔  𝑆𝐶𝑃𝑅𝐺𝜀 . 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 𝑅, 𝑟’𝑆⊥
.

• If 𝑆𝐶𝑃𝑅𝐺𝜀 𝛼 ≠ 𝑅, then output ⊥.
• Otherwise, set 𝑟S⊥  

← 𝛼.

•  If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸  = ⊥010⊥1011⊥  
𝑟 = 1010010110  

Eve does not know:Eve sees:

S⊥  = {1, 5, 10} S0,1  = [10] \ S⊥
With overwhelming probability 𝑅 is not in the 

range of the 𝑆𝐶𝑃𝑅𝐺, so will be functionally 
equivalent to null circuit.



End of the Security Proof: Null Circuit

𝑓(4)(𝑟’):
• Output ⊥.



“Code Offset” construction of SCPRG

𝑆𝐶𝑃𝑅𝐺𝜀(𝑠1, 𝑠2) :
• Output (𝑠1  +  𝒞(𝑠2), 𝐺(𝑠2)).

Injective PRG 𝐺.

List-decodable error correcting code 𝒞 

for up to 
1

2
 −  𝜀 error rate for any 

constant 𝜀 > 0. 

Concatenated code of binary Reed-Solomon codes with 
Hadamard code [Sudan, Trevisan, Vadhan ’99, Sudan ‘00]



“Code Offset” construction of SCPRG

𝑆𝐶𝑃𝑅𝐺𝜀(𝑠1, 𝑠2) :
• Output (𝑠1  +  𝒞(𝑠2), 𝐺(𝑠2)).

Injective PRG 𝐺.

List-decodable error correcting code 𝒞 

for up to 
1

2
 −  𝜀 error rate for any 

constant 𝜀 > 0. 

e.g. concatenated code of binary Reed-Solomon codes 
with Hadamard code 
[Sudan, Trevisan, Vadhan ’99, Sudan ‘00]

Pseudorandomness: 𝑠1 is uniform random, so 𝑠1  +
 𝒞 𝑠2  is uniform random. Then, apply 

pseudorandomness of 𝐺(𝑠2).   



“Code Offset” construction of SCPRG

𝑆𝐶𝑃𝑅𝐺𝜀(𝑠1, 𝑠2) :
• Output (𝑠1  +  𝒞(𝑠2), 𝐺(𝑠2)).

Injective PRG 𝐺.

List-decodable error correcting code 𝒞 

for up to 
1

2
 −  𝜀 error rate for any 

constant 𝜀 > 0. 

Self-correction: Can show, if 𝑠1’, 𝑠’2 ≈ 𝑠1, 𝑠2 and for 
appropriate lengths of 𝑠1 and 𝑠2, then 𝑠1’ ≈ 𝑠1.

Therefore, if 𝑠1’, 𝑠’2 ≈ 𝑠1, 𝑠2  then can recover a 
polynomial size list containing 𝑠2 from 𝑠1  +  𝒞 𝑠2 . 

Use 𝐺(𝑠2) iterate over list to find 𝑠2, then recover 𝑠1. 

e.g. concatenated code of binary Reed-Solomon codes 
with Hadamard code 
[Sudan, Trevisan, Vadhan ’99, Sudan ‘00]



Recap
We sketched the construction and security proof for a computational wiretap 
coding scheme for the non-degraded (𝐵𝑆𝐶, 𝐵𝐸𝐶) case via 𝑖𝑂 & injective PRG.



Theorem: Assuming the existence of indistinguishability obfuscation (𝑖𝑂) 
and injective PRGs, there exists a computational wiretap coding scheme 
for any pair of non-degraded binary-input channels (𝐶ℎ𝐵, 𝐶ℎ𝐸). 

1. The given construction idea easily extends to the non-degraded 
(𝐵𝐴𝐶, 𝐵𝐴𝐸𝐶) setting.



Theorem: Assuming the existence of indistinguishability obfuscation (𝑖𝑂) 
and injective PRGs, there exists a computational wiretap coding scheme 
for any pair of non-degraded binary-input channels (𝐶ℎ𝐵, 𝐶ℎ𝐸). 

1. The given construction idea easily extends to the non-degraded (𝐵𝐴𝐶, 𝐵𝐴𝐸𝐶) setting. 

0

1

0

1

𝑝1

𝑝0

1 − 𝑝0

1 − 𝑝1

0

1

0

1

⊥

1 − 𝑒1

1 − 𝑒0

𝑒0

𝑒1

1 − 𝑝0 𝑝0

𝑝1 1 − 𝑝1

1 − 𝑒0 0 𝑒0

0 1 − 𝑒1 𝑒1



Theorem: Assuming the existence of indistinguishability obfuscation (𝑖𝑂) 
and injective PRGs, there exists a computational wiretap coding scheme 
for any pair of non-degraded binary-input channels (𝐶ℎ𝐵, 𝐶ℎ𝐸). 

1. The given construction idea easily extends to the non-degraded 
(𝐵𝐴𝐶, 𝐵𝐴𝐸𝐶) setting.

2. The case of every non-degraded binary-input channel pair 
𝐶ℎ𝐵, 𝐶ℎ𝐸  reduces to (1).



Some Open 
Directions

• Expanding construction beyond 
binary-input channels.
• Characterize degradation for 

dimension three and beyond.

• Realizing computational wiretap 
coding from simpler cryptographic 
primitives or directly from hardness 
assumptions like LWE.

• Addressing the asterisk* in the initial 
riddle: Can we derandomize the 
encoding?



Thank you !



Appendix: The BAC/BAEC Case 
and General Binary-Input Case



Asymmetric Binary Channels

0

1

0

1

𝑝1

𝑝0

1 − 𝑝0

1 − 𝑝1

0

1

0

1

⊥

1 − 𝑒1

1 − 𝑒0

Binary Asymmetric Channel (BAC) Binary Asymmetric Erasure Channel (BAEC)

𝑒0

𝑒1

1 − 𝑝0 𝑝0

𝑝1 1 − 𝑝1

1 − 𝑒0 0 𝑒0

0 1 − 𝑒1 𝑒1



𝐸𝑛𝑐(𝑚)

𝑓𝑟(𝑟’): 

• If ∆ 𝑟′, 𝑟 <
𝑒0𝑝1+𝑒1𝑝0

𝑒0+𝑒1 
𝑛 + 𝑛0.9 output m

• Output ⊥ otherwise.

ChB = BAC
𝑝0 , 𝑝1

, ChE = BAEC
𝑒0 , 𝑒1

Construction: Same as before, except initial distribution is such that 
from Eve’s view, each erasure equally likely to have been 0 or 1. 

ChB = BAC
𝑝0 , 𝑝1

ChE = BAEC
𝑒0 , 𝑒1

𝑟 𝑟𝐵

𝑟𝐸

Then proceed by similar hybrid 
arguments as before.

Turns out, non-degradation 
condition for this channel pair 

𝑒0𝑝1 + 𝑒1𝑝0  < 𝑒0𝑒1

precisely implies Bob has enough 
advantage to recover 𝑚.  



Pairs of Binary-input Channels 
Reduce to the BAC/BAEC Case



Pair of Arbitrary Binary Input Channels

Consider (𝐵 =
𝑢11 ⋯ 𝑢1𝑛𝐵

𝑢21 ⋯ 𝑢2𝑛𝐵
 , 𝐸 =

𝑢11 ⋯ 𝑢1𝑛𝐸

𝑢21 ⋯ 𝑢2𝑛𝐸
 ) s.t. 𝐵 not a degradation of 𝐸. 

ChB

ChE

𝑟 𝑟𝐵

𝑟𝐸



ChB

ChE

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

Consider (𝐵 =
𝑢11 ⋯ 𝑢1𝑛𝐵

𝑢21 ⋯ 𝑢2𝑛𝐵
 , 𝐸 =

𝑢11 ⋯ 𝑢1𝑛𝐸

𝑢21 ⋯ 𝑢2𝑛𝐸
 ) s.t. 𝐵 not a degradation of 𝐸. 

Reducing Pair of Arbitrary Binary Input Channels to 
BAC/BAEC Case: Bob’s Output Alphabet

ChB’ = BAC described by 
some matrix 𝐵′



ChB

ChE

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

ChB’ = BAC described by 
some matrix 𝐵′

Consider (𝐵’ =
𝑢’11 𝑢’12

𝑢’21 𝑢’22
 , 𝐸 =

𝑣11 ⋯ 𝑣1𝑛𝐸

𝑣21 ⋯ 𝑣2𝑛𝐸
 ) s.t. 𝐵 not a degradation of 𝐸. 

Find 𝐵’ s.t. (1) 𝐵’ not a degradation of 𝐸. 
(2) 𝐵’ degradation of 𝐵. 

Reducing Pair of Arbitrary Binary Input Channels to 
BAC/BAEC Case: Bob’s Output Alphabet



ChB

ChE

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

ChB’ = BAC described by 
some matrix 𝐵′

Consider (𝐵’ =
𝑢’11 𝑢’12

𝑢’21 𝑢’22
 , 𝐸 =

𝑣11 ⋯ 𝑣1𝑛𝐸

𝑣21 ⋯ 𝑣2𝑛𝐸
 ) s.t. 𝐵 not a degradation of 𝐸. 

Find 𝐵’ s.t. (1) 𝐵’ not a degradation of 𝐸. 
(2) 𝐵’ degradation of 𝐵. 

Reducing Pair of Arbitrary Binary Input Channels to 
BAC/BAEC Case: Bob’s Output Alphabet

Any wiretap code for (𝐵’, 𝐸), 
gives a wiretap code (𝐵, 𝐸). 



ChB

ChE’

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

Eve
simulates

𝑟𝐸′

Imagine that Eve instead receives an output through ChE’ = BAEC described by some matrix 𝐸′, 
effectively giving Eve even more information, but hopefully not enough to simulate 𝐵′!

ChE

ChB’ = BAC described by 
some matrix 𝐵′

Consider (𝐵’ =
𝑢’11 𝑢’12

𝑢’21 𝑢’22
 , 𝐸 =

𝑣11 ⋯ 𝑣1𝑛𝐸

𝑣21 ⋯ 𝑣2𝑛𝐸
 ) such that 𝒫 𝐵’ ⊈ 𝒫 𝐸  , 𝒫 𝐵′ ⊆ 𝒫 𝐵  . 

Reducing Pair of Arbitrary Binary Input Channels to 
BAC/BAEC Case: Simulating ChE with a BAEC

Any wiretap code for (𝐵’, 𝐸’), 
gives a wiretap code (𝐵, 𝐸). 



ChB

ChE’

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

Eve
simulates

𝑟𝐸′

Imagine that Eve instead receives an output through ChE’ = BAEC described by some matrix 𝐸′, 
effectively giving Eve even more information, but hopefully not enough to simulate 𝐵′!

ChE

ChB’ = BAC described by 
some matrix 𝐵′

Consider (𝐵’ =
𝑢’11 𝑢’12

𝑢’21 𝑢’22
 , 𝐸 =

𝑣11 ⋯ 𝑣1𝑛𝐸

𝑣21 ⋯ 𝑣2𝑛𝐸
 ) such that 𝒫 𝐵’ ⊈ 𝒫 𝐸  , 𝒫 𝐵′ ⊆ 𝒫 𝐵  . 

Reducing Pair of Arbitrary Binary Input Channels to 
BAC/BAEC Case: Simulating ChE with a BAEC

Any wiretap code for (𝐵’, 𝐸’), 
gives a wiretap code (𝐵, 𝐸). 



Finding BAEC 𝐸′ via Polytope 
Formulation



A New Polytope formulation

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We 
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be 
defined in either of the following equivalent ways:

•  𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.

•  𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1 . 



A New Polytope formulation

Theorem: Let 𝐵 ∈ ℝ2×𝑛𝐵  and E ∈ ℝ2×𝑛𝐸  be arbitrary row-stochastic 
matrices. Then, 𝐵 ≠ 𝐸 ∙ 𝑆 for every row stochastic matrix 𝑆 if and only 

if 𝒫 𝐵 ⊈ 𝒫 𝐸 .

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We 
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be 
defined in either of the following equivalent ways:

•  𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.

•  𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1 . 



A New Polytope formulation

Theorem: Let 𝐵 ∈ ℝ2×𝑛𝐵  and E ∈ ℝ2×𝑛𝐸  be arbitrary row-stochastic 
matrices. Then, Ch𝐵 is not a degradation of Ch𝐸 if and only if 𝒫 𝐵 ⊈

𝒫 𝐸 .

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We 
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be 
defined in either of the following equivalent ways:

•  𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.

•  𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1 . 



A New Polytope formulation

Theorem: Let 𝐵 ∈ ℝ2×𝑛𝐵  and E ∈ ℝ2×𝑛𝐸  be arbitrary row-stochastic 
matrices. Then, Ch𝐵 is not a degradation of Ch𝐸 if and only if 𝒫 𝐵 ⊈

𝒫 𝐸 .

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We 
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be 
defined in either of the following equivalent ways:

•  𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.

•  𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1 . 
If row count > 2, then this is false. 

Explicit counterexample for case of 3. 
In the interest of time, we will not 

sketch the proof.



Polytope 
Example

1 − 𝑝0 𝑝0

𝑝1 1 − 𝑝1

1 − 𝑒0 0 𝑒0

0 1 − 𝑒1 𝑒1

Binary Asymmetric Channel (BAC)

Binary Asymmetric Erasure Channel (BAEC)

The blue polytope corresponds to the BAC.

The red polytope corresponds to the BAEC.

Since the blue polytope is not contained in 
the red polytope, the BAC channel is not a 

degradation of the BAEC channel.



Reducing Eve’s 
Channel to a BAEC

The blue polytope corresponds 
to the BAC.

The red polytope corresponds 
to some channel ChE.

Since the blue polytope is not 
contained in the red polytope, 
the BAC channel is not a 
degradation of ChE.



Reducing Eve’s 
Channel to a BAEC

Apply the strict separating 
hyperplane theorem! 

Take an extreme point of the 
BAC not inside the ChE polytope 
and separate it from the ChE 
polytope.

Olive polytope is a BAEC channel 
s.t. (1) ChE is a degradation and 
(2) ChB is not a degradation.

Can find this polytope efficiently. 
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