
Computational Wiretap Coding
from Indistinguishability Obfuscation

Yuval Ishai (Technion), Aayush Jain (CMU), Paul Lou (UCLA),

Amit Sahai (UCLA), Mark Zhandry (NTT Research→Stanford)

Teaser: Interesting special case of
the general wiretap problem

Binary string 𝑥

𝑥

Random linear code 𝒞

𝒞(𝑥) 𝐵𝑆𝐶0.1 𝒞(𝑥)

Hard to decode: Learning Parity
with Noise (LPN) problem with
constant error probability.

Teaser: Curious Coding Theory Question

Binary string 𝑥

𝑥

Random linear code 𝒞

𝒞(𝑥) 𝐵𝑆𝐶0.1

𝐵𝐸𝐶0.3𝒞(𝑥)

𝒞(𝑥)

𝒞(𝑥)

For the right choice of
parameters, Gaussian
elimination recovers 𝑥.

Hard to decode: Learning Parity
with Noise (LPN) problem with
constant error probability.

Teaser: Curious Coding Theory Question

Binary string 𝑥

𝑥

Random linear code 𝒞

𝒞(𝑥) 𝐵𝑆𝐶0.1

𝐵𝐸𝐶0.3𝒞(𝑥)

𝒞(𝑥)

𝒞(𝑥)

For the right choice of
parameters, Gaussian
elimination recovers 𝑥.

Hard to decode: Learning Parity
with Noise (LPN) problem with
constant error probability.

Teaser: Curious Coding Theory Question
Do there exist error-correcting codes that satisfy the following?

1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Binary string 𝑥

𝑥

Random linear code 𝒞

𝒞(𝑥) 𝐵𝑆𝐶0.1

𝐵𝐸𝐶0.3𝒞(𝑥)

𝒞(𝑥)

𝒞(𝑥)

For the right choice of
parameters, Gaussian
elimination recovers 𝑥.

Hard to decode: Learning Parity
with Noise (LPN) problem with
constant error probability.

Teaser: Curious Coding Theory Question
Do there exist error-correcting codes that satisfy the following?

1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Until 2022, no such codes known to satisfy both.

Binary string 𝑥

𝑥

Random linear code 𝒞

𝒞(𝑥) 𝐵𝑆𝐶0.1

𝐵𝐸𝐶0.3𝒞(𝑥)

𝒞(𝑥)

𝒞(𝑥)

For the right choice of
parameters, Gaussian
elimination recovers 𝑥.

Hard to decode: Learning Parity
with Noise (LPN) problem with
constant error probability.

Teaser: Curious Coding Theory Question
Do there exist error-correcting codes that satisfy the following?

1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Until 2022, no such codes known to satisfy both.

Ishai, Korb, Lou, Sahai ‘22: Yes*, in the ideal obfuscation model (or non-standard
VBB obfuscation assumptions)!

Binary string 𝑥

𝑥

Random linear code 𝒞

𝒞(𝑥) 𝐵𝑆𝐶0.1

𝐵𝐸𝐶0.3𝒞(𝑥)

𝒞(𝑥)

𝒞(𝑥)

For the right choice of
parameters, Gaussian
elimination recovers 𝑥.

Hard to decode: Learning Parity
with Noise (LPN) problem with
constant error probability.

Teaser: Curious Coding Theory Question
Do there exist error-correcting codes that satisfy the following?

1. Easy to decode from 0.1 bitflip error rate. [LDPC, BCH, etc.]
2. Computationally hard to decode from 0.3 erasure rate. [Linear codes fail]

Until 2022, no such codes known to satisfy both.

Ishai, Korb, Lou, Sahai ‘22: Yes*, in the ideal obfuscation model (or non-standard
VBB obfuscation assumptions)!

This Work: Yes*, assuming well-studied hardness assumptions!

General Setting:
Wiretap Channel [Wyn75]

ChB

ChE

𝒳𝑛 𝒴𝑛

𝒵𝑛

ℳ ℳ

Alice Bob

Eve

Encode Decode

Goal: Alice wants to send a message to Bob without Eve learning it.

ChB

ChE

𝒳𝑛 𝒴𝑛

𝒵𝑛

ℳ ℳ

Alice Bob

Eve

Encode Decode

Goal: Alice wants to send a message to Bob without Eve learning it.

➢ Discrete memoryless
channels (DMCs).

➢ Non-interactive.
➢ No shared secrets.

More General Setting:
Wiretap Channel [Wyn75]

For what pairs of channels do
wiretap coding schemes exist?

Intuitive Impossibility for Degraded Pairs

Impossible for channel pair 𝐵𝑆𝐶0.1, 𝐵𝐸𝐶0.2 . Eve can perfectly
simulate 𝐵𝑆𝐶0.1’s output distribution using an output of 𝐵𝐸𝐶0.2.

𝐵𝐸𝐶0.2𝒳 𝒵
Guess

random bits
for erasures

𝒴

𝐵𝑆𝐶0.1

Intuitive Impossibility for Degraded Pairs

Impossible for any channel pair 𝐶ℎ𝐵, 𝐶ℎ𝐸 where Eve can perfectly
simulate 𝐶ℎ𝐵’s output distribution using an output of 𝐶ℎ𝐸.

ChE𝒳 𝒵 S 𝒴

𝐶ℎ𝐵

Intuitive Impossibility for Degraded Pairs

Impossible for any channel pair 𝐶ℎ𝐵, 𝐶ℎ𝐸 where Eve can perfectly
simulate 𝐶ℎ𝐵’s output distribution using an output of 𝐶ℎ𝐸.

Degradation: 𝐶ℎ𝐵 is a degradation of 𝐶ℎ𝐸 if and only if Eve can
perfectly simulate 𝐶ℎ𝐵 using 𝐶ℎ𝐸.

ChE𝒳 𝒵 S 𝒴

𝐶ℎ𝐵

Existence of Wiretap Coding Schemes

None for (𝐶ℎ𝐵, 𝐶ℎ𝐸) where 𝐶ℎ𝐵 is a
degradation of 𝐶ℎ𝐸.

Do there exist wiretap coding schemes
for non-degraded channel pairs

(𝐶ℎ𝐵, 𝐶ℎ𝐸)?

?x

Existence of Wiretap Coding Schemes

None for (𝐶ℎ𝐵, 𝐶ℎ𝐸) where 𝐶ℎ𝐵 is a
degradation of 𝐶ℎ𝐸.

Csiszár, Korner ‘78: There are non-
degraded channel pairs that do not have
statistical wiretap coding schemes.

Non-degraded pairs
with statistical
wiretap coding
schemes

Degraded

(𝐵𝑆𝐶0.1, 𝐵𝐸𝐶0.3)

Existence of Wiretap Coding Schemes

None for (𝐶ℎ𝐵, 𝐶ℎ𝐸) where 𝐶ℎ𝐵 is a
degradation of 𝐶ℎ𝐸.

Csiszár, Korner ‘78: There are non-
degraded channel pairs that do not have
statistical wiretap coding schemes.

Non-degraded pairs
with statistical
wiretap coding
schemes

Degraded

Can cryptography enable wiretap coding schemes for a larger
class of channel pairs?

Existence of Wiretap Coding Schemes

None for (𝐶ℎ𝐵, 𝐶ℎ𝐸) where 𝐶ℎ𝐵 is a
degradation of 𝐶ℎ𝐸.

Ishai, Korb, Lou, Sahai ‘22: There exists a
computational wiretap coding scheme for
all non-degraded channel pairs in the Ideal
Obfuscation Model (or non-std. VBB
obfuscation).

Non-degraded pairs
with computational
wiretap coding
schemes with ideal
obfuscation.

Degraded

Csiszár, Korner ‘78: There are non-
degraded channel pairs that do not have
statistical wiretap coding schemes.

(𝐵𝑆𝐶0.1, 𝐵𝐸𝐶0.3)

Can we obtain computational
wiretap coding schemes from
well-studied assumptions?

Our Main Result: YES

Theorem: Assuming the existence of indistinguishability obfuscation (𝑖𝑂)
and injective PRGs, there exists a computational wiretap coding scheme
for any pair of non-degraded binary-input channels (𝐶ℎ𝐵, 𝐶ℎ𝐸).

Non-degraded binary-
input channel pairs
with computational
wiretap coding
schemes from well-
studied assumptions

Non-degraded binary-
input

Degraded

Other non-degraded
channel pairs. Comp.
wiretap via idealized
obfuscation.

(𝐵𝑆𝐶0.1, 𝐵𝐸𝐶0.3)

Solves* the teaser:

Our Techniques

1. Using iO and injective PRGs, we construct a Hamming ball
obfuscator.
➢Construction uses a new gadget: PRG with Self-Correction.

➢Using this, we build computational wiretap coding schemes for binary
asymmetric channels (BAC) and binary asymmetric erasure channels (BAEC).

2. We introduce a polytope characterization of degradation.
➢ Using this polytope characterization, we reduce the problem of constructing

a computational wiretap coding scheme for any non-degraded binary-input
channel pair to constructing one for (BAC, BAEC).

Focus of this talk:
A computational wiretap coding
scheme from 𝑖𝑂 for
(ChB = BSC0.1, ChE = BEC0.3)
*Construction idea easily extends to the non-degraded (BAC, BAEC) setting.

**See paper or slide appendix for extension to all non-degraded binary-input.

Indistinguishability Obfuscation (𝑖𝑂) [BGIRSVY01]

≡ ≈𝑐𝑜𝑚𝑝

𝑖𝑂

𝑖𝑂

𝐶0

𝐶1

መ𝐶0

መ𝐶1

Indistinguishability Obfuscation (𝑖𝑂) [BGIRSVY01]

≡ ≈𝑐𝑜𝑚𝑝

𝑖𝑂

𝑖𝑂

𝐶0

𝐶1

መ𝐶0

መ𝐶1

Now known from well-studied hardness assumptions !! [JLS21]

New Gadget:
PRG with Self-Correction (SCPRG)
1. Polynomial Stretch & Pseudorandomness

2. 𝜀-Self-Correction

Seed

SC-PRG(Seed) Random≈𝑐𝑜𝑚𝑝

SC-PRG(Seed)

Seed’

where Seed’ agrees with Seed

on at least
1

2
+ 𝜀 fraction of bits, Seed

Can efficiently recover

New Gadget:
PRG with Self-Correction (SCPRG)
1. Polynomial Stretch & Pseudorandomness

2. 𝜀-Self-Correction (recovery works w.h.p. over choices of seeds)

Seed

SC-PRG(Seed) Random≈𝑐𝑜𝑚𝑝

SC-PRG(Seed)

Seed’

where Seed’ agrees with Seed

on at least
1

2
+ 𝜀 fraction of bits, Seed

Can efficiently recover

For this talk, 𝜀 =
1

12
. In general, some constant.

New Gadget:
PRG with Self-Correction (SCPRG)
1. Polynomial Stretch & Pseudorandomness

2. 𝜀-Self-Correction

Seed

SC-PRG(Seed) Random≈𝑐𝑜𝑚𝑝

SC-PRG(Seed)

Seed’

where Seed’ agrees with Seed

on at least
1

2
+ 𝜀 fraction of bits, Seed

Can efficiently recover

Bogdanov, Qiao ‘12: Goldreich PRG, even with linear stretch, is a SCPRG.

New Gadget:
PRG with Self-Correction (SCPRG)
1. Polynomial Stretch & Pseudorandomness

2. 𝜀-Self-Correction

Seed

SC-PRG(Seed) Random≈𝑐𝑜𝑚𝑝

SC-PRG(Seed)

Seed’

where Seed’ agrees with Seed

on at least
1

2
+ 𝜀 fraction of bits, Seed

Can efficiently recover

Our Work: Injective SC-PRG from any injective PRG.

𝐸𝑛𝑐(𝑚)

𝑓𝑟(𝑟’):
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output m
• Output ⊥ otherwise.

ChB = BSC0.1, ChE = BEC0.3

ChB = BSC0.1

ChE = BEC0.3

𝑟 𝑟𝐵

𝑟𝐸

Using ideal obfuscation [IKLS22]: Send a uniform random 𝑟 ∈ 0,1 𝑛 across the
wiretap channel. Then, send an obfuscation of 𝑓𝑟, encoded to Bob’s channel.

Correctness:
𝑓𝑟(𝑟𝐵) = 𝑚 with high

probability

𝐸𝑛𝑐(𝑚)

𝑓𝑟(𝑟’):
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output m
• Output ⊥ otherwise.

ChB = BSC0.1, ChE = BEC0.3

ChB = BSC0.1

ChE = BEC0.3

𝑟 𝑟𝐵

𝑟𝐸

Eve’s best guess for 𝑟’ has ≈ 0.15 error rate.

If we were using an ideal obfuscation, then 𝑟 and 𝑚 are hidden.

Correctness:
𝑓𝑟(𝑟𝐵) = 𝑚 with high

probability

Using ideal obfuscation [IKLS22]: Send a uniform random 𝑟 ∈ 0,1 𝑛 across the
wiretap channel. Then, send an obfuscation of 𝑓𝑟, encoded to Bob’s channel.

𝐸𝑛𝑐(𝑚)

𝑓𝑟(𝑟’):
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output m
• Output ⊥ otherwise.

ChB = BSC0.1, ChE = BEC0.3

ChB = BSC0.1

ChE = BEC0.3

𝑟 𝑟𝐵

𝑟𝐸

Security: Why does 𝑖𝑂(𝑓𝑟) hide 𝑚 or 𝑟?

Construction: Send a uniform random 𝑟 ∈ 0,1 𝑛 across the wiretap
channel. Then, send an 𝑖𝑂 of 𝑓𝑟, encoded to Bob’s channel.

Correctness:
𝑓𝑟(𝑟𝐵) = 𝑚 with high

probability

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

𝑓𝑟(𝑟’):
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output 𝑚
• Output ⊥ otherwise.

𝑓𝑟(𝑟’):
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output 𝑚
• Output ⊥ otherwise.

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:
Goal: Use a hybrid argument to show that

this circuit is indistinguishable from the null
circuit.

Problem: There are exponentially many
points in the Hamming ball!

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

𝑓𝑟(𝑟’):
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output m
• Output ⊥ otherwise.

Critical observation: In intermediate
hybrids, this circuit can depend on

the actual received string 𝑟𝐸.

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

𝑓𝑟(𝑟’):
• If ∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output m
• Output ⊥ otherwise.

Critical observation: In intermediate
hybrids, this circuit can depend on

the actual received string 𝑟𝐸.

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥ .

• If∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output 𝑚
• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

Split the hardcoded 𝑟 into
two substrings depending

on S⊥

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥ .

• If∆ 𝑟′, 𝑟 < 0.1𝑛 + 𝑛0.9 output 𝑚
• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

𝑟’ is Eve’s
guess.

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

Rewrite the Hamming
distance condition

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

𝑟′
S⊥ ,

𝑟′
S0,1

 are substrings

of Eve’s guess.

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

Security: An Indistinguishable Viewpoint

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

𝑟S⊥ ,
𝑟S0,1

 are substrings of

the sent random string.

Security: An Indistinguishable Viewpoint

𝑟𝐸 = ⊥010⊥1011⊥

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥
Functionally

Equivalent to 𝑓𝑟(∙)!!

Security: An Indistinguishable Viewpoint

𝑟𝐸 = ⊥010⊥1011⊥

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

Eve knows the non-erased coordinates.

Security: An Indistinguishable Viewpoint

𝑟𝐸 = ⊥010⊥1011⊥

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥ .

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥
Eve’s best strategy is to uniformly guess for 𝑟′

S⊥
.

There are exponentially many guesses that cause the function to
output 𝑚.

We will compress them into a single branch that can be removed
by a hybrid argument.

Using injective length-tripling SCPRGs

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥. 𝐺(𝛼), 𝑧

• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥
 to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥

← 𝒞 𝛼 + 𝑧.

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

Using injective length-tripling SCPRGs

𝑓(1)(𝑟’):
Constants: 𝑟S0,1

, 𝑟S⊥
, S⊥. 𝐺(𝛼), 𝑧

• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥
 to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥

← 𝒞 𝛼 + 𝑧.

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥Replace with 𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥
) for some choice of 𝜀

dependent on degradation condition. Here, 𝜀 =
1

12
.

Using injective length-tripling SCPRGs

𝑓(2)(𝑟’):
Constants: 𝑟S0,1

, 𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥
), S⊥. 𝐺(𝛼), 𝑧

• Let 𝛼 ≔ 𝑆𝐶𝑃𝑅𝐺𝜀 . 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 𝑆𝐶𝑃𝑅𝐺𝜀 𝑟𝑆⊥
, 𝑟’𝑆⊥

.

• If 𝑆𝐶𝑃𝑅𝐺𝜀 𝛼 ≠ 𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥
), then output ⊥ .

• Otherwise, set 𝑟S⊥
← 𝛼.

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥
Parameter 𝜀 , dependent on degradation

condition, is set so that Eve is unable to recover.

Here, 𝜀 =
1

12
.

Using injective length-tripling SCPRGs

𝑓(2)(𝑟’):
Constants: 𝑟S0,1

, 𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥
), S⊥.

• Let 𝛼 ≔ 𝑆𝐶𝑃𝑅𝐺𝜀 . 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 𝑆𝐶𝑃𝑅𝐺𝜀 𝑟𝑆⊥
, 𝑟’𝑆⊥

.
• If 𝑆𝐶𝑃𝑅𝐺𝜀 𝛼 ≠ 𝑆𝐶𝑃𝑅𝐺𝜀(𝑟𝑆⊥

), then output ⊥ .

• Otherwise, set 𝑟S⊥
← 𝛼.

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥
From Eve’s point of view, 𝑟𝑆⊥

 is an unknown

uniform random string.

Using injective length-tripling SCPRGs

𝑓(3)(𝑟’):
Constants: 𝑟S0,1

, 𝑅, S⊥.

• Let 𝛼 ≔ 𝑆𝐶𝑃𝑅𝐺𝜀 . 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 𝑅, 𝑟’𝑆⊥
.

• If 𝑆𝐶𝑃𝑅𝐺𝜀 𝛼 ≠ 𝑅, then output ⊥.
• Otherwise, set 𝑟S⊥

← 𝛼.

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥

Can therefore apply pseudorandomness property.

Using injective length-tripling SCPRGs

𝑓(3)(𝑟’):
Constants: 𝑟S0,1

, 𝑅, S⊥.

• Let 𝛼 ≔ 𝑆𝐶𝑃𝑅𝐺𝜀 . 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 𝑅, 𝑟’𝑆⊥
.

• If 𝑆𝐶𝑃𝑅𝐺𝜀 𝛼 ≠ 𝑅, then output ⊥.
• Otherwise, set 𝑟S⊥

← 𝛼.

• If ∆ 𝑟′
S⊥

, 𝑟S⊥
+ ∆ 𝑟′

S0,1
, 𝑟S0,1

< 0.1𝑛 + 𝑛0.9 output 𝑚

• Output ⊥ otherwise.

𝑟𝐸 = ⊥010⊥1011⊥
𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1, 5, 10} S0,1 = [10] \ S⊥
With overwhelming probability 𝑅 is not in the

range of the 𝑆𝐶𝑃𝑅𝐺, so will be functionally
equivalent to null circuit.

End of the Security Proof: Null Circuit

𝑓(4)(𝑟’):
• Output ⊥.

“Code Offset” construction of SCPRG

𝑆𝐶𝑃𝑅𝐺𝜀(𝑠1, 𝑠2) :
• Output (𝑠1 + 𝒞(𝑠2), 𝐺(𝑠2)).

Injective PRG 𝐺.

List-decodable error correcting code 𝒞

for up to
1

2
 − 𝜀 error rate for any

constant 𝜀 > 0.

Concatenated code of binary Reed-Solomon codes with
Hadamard code [Sudan, Trevisan, Vadhan ’99, Sudan ‘00]

“Code Offset” construction of SCPRG

𝑆𝐶𝑃𝑅𝐺𝜀(𝑠1, 𝑠2) :
• Output (𝑠1 + 𝒞(𝑠2), 𝐺(𝑠2)).

Injective PRG 𝐺.

List-decodable error correcting code 𝒞

for up to
1

2
 − 𝜀 error rate for any

constant 𝜀 > 0.

e.g. concatenated code of binary Reed-Solomon codes
with Hadamard code
[Sudan, Trevisan, Vadhan ’99, Sudan ‘00]

Pseudorandomness: 𝑠1 is uniform random, so 𝑠1 +
 𝒞 𝑠2 is uniform random. Then, apply

pseudorandomness of 𝐺(𝑠2).

“Code Offset” construction of SCPRG

𝑆𝐶𝑃𝑅𝐺𝜀(𝑠1, 𝑠2) :
• Output (𝑠1 + 𝒞(𝑠2), 𝐺(𝑠2)).

Injective PRG 𝐺.

List-decodable error correcting code 𝒞

for up to
1

2
 − 𝜀 error rate for any

constant 𝜀 > 0.

Self-correction: Can show, if 𝑠1’, 𝑠’2 ≈ 𝑠1, 𝑠2 and for
appropriate lengths of 𝑠1 and 𝑠2, then 𝑠1’ ≈ 𝑠1.

Therefore, if 𝑠1’, 𝑠’2 ≈ 𝑠1, 𝑠2 then can recover a
polynomial size list containing 𝑠2 from 𝑠1 + 𝒞 𝑠2 .

Use 𝐺(𝑠2) iterate over list to find 𝑠2, then recover 𝑠1.

e.g. concatenated code of binary Reed-Solomon codes
with Hadamard code
[Sudan, Trevisan, Vadhan ’99, Sudan ‘00]

Recap
We sketched the construction and security proof for a computational wiretap
coding scheme for the non-degraded (𝐵𝑆𝐶, 𝐵𝐸𝐶) case via 𝑖𝑂 & injective PRG.

Theorem: Assuming the existence of indistinguishability obfuscation (𝑖𝑂)
and injective PRGs, there exists a computational wiretap coding scheme
for any pair of non-degraded binary-input channels (𝐶ℎ𝐵, 𝐶ℎ𝐸).

1. The given construction idea easily extends to the non-degraded
(𝐵𝐴𝐶, 𝐵𝐴𝐸𝐶) setting.

Theorem: Assuming the existence of indistinguishability obfuscation (𝑖𝑂)
and injective PRGs, there exists a computational wiretap coding scheme
for any pair of non-degraded binary-input channels (𝐶ℎ𝐵, 𝐶ℎ𝐸).

1. The given construction idea easily extends to the non-degraded (𝐵𝐴𝐶, 𝐵𝐴𝐸𝐶) setting.

0

1

0

1

𝑝1

𝑝0

1 − 𝑝0

1 − 𝑝1

0

1

0

1

⊥

1 − 𝑒1

1 − 𝑒0

𝑒0

𝑒1

1 − 𝑝0 𝑝0

𝑝1 1 − 𝑝1

1 − 𝑒0 0 𝑒0

0 1 − 𝑒1 𝑒1

Theorem: Assuming the existence of indistinguishability obfuscation (𝑖𝑂)
and injective PRGs, there exists a computational wiretap coding scheme
for any pair of non-degraded binary-input channels (𝐶ℎ𝐵, 𝐶ℎ𝐸).

1. The given construction idea easily extends to the non-degraded
(𝐵𝐴𝐶, 𝐵𝐴𝐸𝐶) setting.

2. The case of every non-degraded binary-input channel pair
𝐶ℎ𝐵, 𝐶ℎ𝐸 reduces to (1).

Some Open
Directions

• Expanding construction beyond
binary-input channels.
• Characterize degradation for

dimension three and beyond.

• Realizing computational wiretap
coding from simpler cryptographic
primitives or directly from hardness
assumptions like LWE.

• Addressing the asterisk* in the initial
riddle: Can we derandomize the
encoding?

Thank you !

Appendix: The BAC/BAEC Case
and General Binary-Input Case

Asymmetric Binary Channels

0

1

0

1

𝑝1

𝑝0

1 − 𝑝0

1 − 𝑝1

0

1

0

1

⊥

1 − 𝑒1

1 − 𝑒0

Binary Asymmetric Channel (BAC) Binary Asymmetric Erasure Channel (BAEC)

𝑒0

𝑒1

1 − 𝑝0 𝑝0

𝑝1 1 − 𝑝1

1 − 𝑒0 0 𝑒0

0 1 − 𝑒1 𝑒1

𝐸𝑛𝑐(𝑚)

𝑓𝑟(𝑟’):

• If ∆ 𝑟′, 𝑟 <
𝑒0𝑝1+𝑒1𝑝0

𝑒0+𝑒1
𝑛 + 𝑛0.9 output m

• Output ⊥ otherwise.

ChB = BAC
𝑝0 , 𝑝1

, ChE = BAEC
𝑒0 , 𝑒1

Construction: Same as before, except initial distribution is such that
from Eve’s view, each erasure equally likely to have been 0 or 1.

ChB = BAC
𝑝0 , 𝑝1

ChE = BAEC
𝑒0 , 𝑒1

𝑟 𝑟𝐵

𝑟𝐸

Then proceed by similar hybrid
arguments as before.

Turns out, non-degradation
condition for this channel pair

𝑒0𝑝1 + 𝑒1𝑝0 < 𝑒0𝑒1

precisely implies Bob has enough
advantage to recover 𝑚.

Pairs of Binary-input Channels
Reduce to the BAC/BAEC Case

Pair of Arbitrary Binary Input Channels

Consider (𝐵 =
𝑢11 ⋯ 𝑢1𝑛𝐵

𝑢21 ⋯ 𝑢2𝑛𝐵
 , 𝐸 =

𝑢11 ⋯ 𝑢1𝑛𝐸

𝑢21 ⋯ 𝑢2𝑛𝐸
) s.t. 𝐵 not a degradation of 𝐸.

ChB

ChE

𝑟 𝑟𝐵

𝑟𝐸

ChB

ChE

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

Consider (𝐵 =
𝑢11 ⋯ 𝑢1𝑛𝐵

𝑢21 ⋯ 𝑢2𝑛𝐵
 , 𝐸 =

𝑢11 ⋯ 𝑢1𝑛𝐸

𝑢21 ⋯ 𝑢2𝑛𝐸
) s.t. 𝐵 not a degradation of 𝐸.

Reducing Pair of Arbitrary Binary Input Channels to
BAC/BAEC Case: Bob’s Output Alphabet

ChB’ = BAC described by
some matrix 𝐵′

ChB

ChE

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

ChB’ = BAC described by
some matrix 𝐵′

Consider (𝐵’ =
𝑢’11 𝑢’12

𝑢’21 𝑢’22
 , 𝐸 =

𝑣11 ⋯ 𝑣1𝑛𝐸

𝑣21 ⋯ 𝑣2𝑛𝐸
) s.t. 𝐵 not a degradation of 𝐸.

Find 𝐵’ s.t. (1) 𝐵’ not a degradation of 𝐸.
(2) 𝐵’ degradation of 𝐵.

Reducing Pair of Arbitrary Binary Input Channels to
BAC/BAEC Case: Bob’s Output Alphabet

ChB

ChE

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

ChB’ = BAC described by
some matrix 𝐵′

Consider (𝐵’ =
𝑢’11 𝑢’12

𝑢’21 𝑢’22
 , 𝐸 =

𝑣11 ⋯ 𝑣1𝑛𝐸

𝑣21 ⋯ 𝑣2𝑛𝐸
) s.t. 𝐵 not a degradation of 𝐸.

Find 𝐵’ s.t. (1) 𝐵’ not a degradation of 𝐸.
(2) 𝐵’ degradation of 𝐵.

Reducing Pair of Arbitrary Binary Input Channels to
BAC/BAEC Case: Bob’s Output Alphabet

Any wiretap code for (𝐵’, 𝐸),
gives a wiretap code (𝐵, 𝐸).

ChB

ChE’

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

Eve
simulates

𝑟𝐸′

Imagine that Eve instead receives an output through ChE’ = BAEC described by some matrix 𝐸′,
effectively giving Eve even more information, but hopefully not enough to simulate 𝐵′!

ChE

ChB’ = BAC described by
some matrix 𝐵′

Consider (𝐵’ =
𝑢’11 𝑢’12

𝑢’21 𝑢’22
 , 𝐸 =

𝑣11 ⋯ 𝑣1𝑛𝐸

𝑣21 ⋯ 𝑣2𝑛𝐸
) such that 𝒫 𝐵’ ⊈ 𝒫 𝐸 , 𝒫 𝐵′ ⊆ 𝒫 𝐵 .

Reducing Pair of Arbitrary Binary Input Channels to
BAC/BAEC Case: Simulating ChE with a BAEC

Any wiretap code for (𝐵’, 𝐸’),
gives a wiretap code (𝐵, 𝐸).

ChB

ChE’

ChPost𝑟 𝑟𝐵

𝑟𝐸

𝑟𝐵′

Eve
simulates

𝑟𝐸′

Imagine that Eve instead receives an output through ChE’ = BAEC described by some matrix 𝐸′,
effectively giving Eve even more information, but hopefully not enough to simulate 𝐵′!

ChE

ChB’ = BAC described by
some matrix 𝐵′

Consider (𝐵’ =
𝑢’11 𝑢’12

𝑢’21 𝑢’22
 , 𝐸 =

𝑣11 ⋯ 𝑣1𝑛𝐸

𝑣21 ⋯ 𝑣2𝑛𝐸
) such that 𝒫 𝐵’ ⊈ 𝒫 𝐸 , 𝒫 𝐵′ ⊆ 𝒫 𝐵 .

Reducing Pair of Arbitrary Binary Input Channels to
BAC/BAEC Case: Simulating ChE with a BAEC

Any wiretap code for (𝐵’, 𝐸’),
gives a wiretap code (𝐵, 𝐸).

Finding BAEC 𝐸′ via Polytope
Formulation

A New Polytope formulation

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be
defined in either of the following equivalent ways:

• 𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.

• 𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1 .

A New Polytope formulation

Theorem: Let 𝐵 ∈ ℝ2×𝑛𝐵 and E ∈ ℝ2×𝑛𝐸 be arbitrary row-stochastic
matrices. Then, 𝐵 ≠ 𝐸 ∙ 𝑆 for every row stochastic matrix 𝑆 if and only

if 𝒫 𝐵 ⊈ 𝒫 𝐸 .

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be
defined in either of the following equivalent ways:

• 𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.

• 𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1 .

A New Polytope formulation

Theorem: Let 𝐵 ∈ ℝ2×𝑛𝐵 and E ∈ ℝ2×𝑛𝐸 be arbitrary row-stochastic
matrices. Then, Ch𝐵 is not a degradation of Ch𝐸 if and only if 𝒫 𝐵 ⊈

𝒫 𝐸 .

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be
defined in either of the following equivalent ways:

• 𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.

• 𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1 .

A New Polytope formulation

Theorem: Let 𝐵 ∈ ℝ2×𝑛𝐵 and E ∈ ℝ2×𝑛𝐸 be arbitrary row-stochastic
matrices. Then, Ch𝐵 is not a degradation of Ch𝐸 if and only if 𝒫 𝐵 ⊈

𝒫 𝐸 .

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be
defined in either of the following equivalent ways:

• 𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.

• 𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1 .
If row count > 2, then this is false.

Explicit counterexample for case of 3.
In the interest of time, we will not

sketch the proof.

Polytope
Example

1 − 𝑝0 𝑝0

𝑝1 1 − 𝑝1

1 − 𝑒0 0 𝑒0

0 1 − 𝑒1 𝑒1

Binary Asymmetric Channel (BAC)

Binary Asymmetric Erasure Channel (BAEC)

The blue polytope corresponds to the BAC.

The red polytope corresponds to the BAEC.

Since the blue polytope is not contained in
the red polytope, the BAC channel is not a

degradation of the BAEC channel.

Reducing Eve’s
Channel to a BAEC

The blue polytope corresponds
to the BAC.

The red polytope corresponds
to some channel ChE.

Since the blue polytope is not
contained in the red polytope,
the BAC channel is not a
degradation of ChE.

Reducing Eve’s
Channel to a BAEC

Apply the strict separating
hyperplane theorem!

Take an extreme point of the
BAC not inside the ChE polytope
and separate it from the ChE
polytope.

Olive polytope is a BAEC channel
s.t. (1) ChE is a degradation and
(2) ChB is not a degradation.

Can find this polytope efficiently.

	Slide 1: Computational Wiretap Coding from Indistinguishability Obfuscation
	Slide 2: Teaser: Interesting special case of the general wiretap problem
	Slide 3: Teaser: Curious Coding Theory Question
	Slide 4: Teaser: Curious Coding Theory Question
	Slide 5: Teaser: Curious Coding Theory Question
	Slide 6: Teaser: Curious Coding Theory Question
	Slide 7: Teaser: Curious Coding Theory Question
	Slide 8: Teaser: Curious Coding Theory Question
	Slide 9: General Setting: Wiretap Channel [Wyn75]
	Slide 10: More General Setting: Wiretap Channel [Wyn75]
	Slide 11: For what pairs of channels do wiretap coding schemes exist?
	Slide 12: Intuitive Impossibility for Degraded Pairs
	Slide 13: Intuitive Impossibility for Degraded Pairs
	Slide 14: Intuitive Impossibility for Degraded Pairs
	Slide 15: Existence of Wiretap Coding Schemes
	Slide 16: Existence of Wiretap Coding Schemes
	Slide 17: Existence of Wiretap Coding Schemes
	Slide 18: Existence of Wiretap Coding Schemes
	Slide 19: Can we obtain computational wiretap coding schemes from well-studied assumptions?
	Slide 20: Our Main Result: YES
	Slide 21: Our Techniques
	Slide 22: Focus of this talk: A computational wiretap coding scheme from i. O for (ChB = BSC0.1, ChE = BEC0.3)
	Slide 23: Indistinguishability Obfuscation (i. O) [BGIRSVY01]
	Slide 24: Indistinguishability Obfuscation (i. O) [BGIRSVY01]
	Slide 25: New Gadget: PRG with Self-Correction (SCPRG)
	Slide 26: New Gadget: PRG with Self-Correction (SCPRG)
	Slide 27: New Gadget: PRG with Self-Correction (SCPRG)
	Slide 28: New Gadget: PRG with Self-Correction (SCPRG)
	Slide 29: ChB = BSC0.1, ChE = BEC0.3
	Slide 30: ChB = BSC0.1, ChE = BEC0.3
	Slide 31: ChB = BSC0.1, ChE = BEC0.3
	Slide 32: Security: What Does Eve See?
	Slide 33: Security: What Does Eve See?
	Slide 34: Security: What Does Eve See?
	Slide 35: Security: What Does Eve See?
	Slide 36: Security: An Indistinguishable Viewpoint
	Slide 37: Security: An Indistinguishable Viewpoint
	Slide 38: Security: An Indistinguishable Viewpoint
	Slide 39: Security: An Indistinguishable Viewpoint
	Slide 40: Security: An Indistinguishable Viewpoint
	Slide 41: Security: An Indistinguishable Viewpoint
	Slide 42: Security: An Indistinguishable Viewpoint
	Slide 43: Security: An Indistinguishable Viewpoint
	Slide 44: Using injective length-tripling SCPRGs
	Slide 45: Using injective length-tripling SCPRGs
	Slide 46: Using injective length-tripling SCPRGs
	Slide 47: Using injective length-tripling SCPRGs
	Slide 48: Using injective length-tripling SCPRGs
	Slide 49: Using injective length-tripling SCPRGs
	Slide 50: End of the Security Proof: Null Circuit
	Slide 51: “Code Offset” construction of SCPRG
	Slide 52: “Code Offset” construction of SCPRG
	Slide 53: “Code Offset” construction of SCPRG
	Slide 54: Recap
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Some Open Directions
	Slide 59: Thank you !
	Slide 60: Appendix: The BAC/BAEC Case and General Binary-Input Case
	Slide 61: Asymmetric Binary Channels
	Slide 62: ChB = BACp 0,p 1, ChE = BAECe 0,e 1
	Slide 63: Pairs of Binary-input Channels Reduce to the BAC/BAEC Case
	Slide 64: Pair of Arbitrary Binary Input Channels
	Slide 65: Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob’s Output Alphabet
	Slide 66: Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob’s Output Alphabet
	Slide 67: Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Bob’s Output Alphabet
	Slide 68: Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Simulating ChE with a BAEC
	Slide 69: Reducing Pair of Arbitrary Binary Input Channels to BAC/BAEC Case: Simulating ChE with a BAEC
	Slide 70: Finding BAEC E via Polytope Formulation
	Slide 71: A New Polytope formulation
	Slide 72: A New Polytope formulation
	Slide 73: A New Polytope formulation
	Slide 74: A New Polytope formulation
	Slide 75: Polytope Example
	Slide 76: Reducing Eve’s Channel to a BAEC
	Slide 77: Reducing Eve’s Channel to a BAEC

