
Computational Wiretap Coding via
Obfuscation

Paul Lou
UCLA

Based on joint works with Yuval Ishai, Aayush Jain, Alexis Korb, Amit Sahai, & Mark Zhandry
[IKLS22, IJLSZ22]

Wiretap Channel [Wyn75]

ChB

ChE

Xn Yn

Zn

M M

Alice Bob

Eve

Encode Decode

Goal: Alice wants to send a message to Bob without Eve learning it.

Wiretap Channel [Wyn75]

ChB

ChE

Xn Yn

Zn

M M

Alice Bob
Encode Decode

Goal: Alice wants to send a message to Bob without Eve learning it.

• Discrete memoryless
channels (DMCs)

• Non-interactive
• No shared secrets

Eve

Formal Definition (Statistical)
Def: (Enc, Dec) is a statistically secure wiretap coding scheme for
wiretap channel (ChB, ChE) if
• Correctness: For all messages m ∈ 0, 1 ,

Pr 𝐷𝑒𝑐 1!, 𝐶ℎ𝐵 𝐸𝑛𝑐 1!, 𝑚 = 𝑚 ≥ 1 − 𝑛𝑒𝑔𝑙(λ)

• Security: For all adversaries A,

Pr 𝐴 1!, 𝐶ℎ𝐸 𝐸𝑛𝑐 1!, 𝑏 = 𝑏 ≤ "
#
+ 𝑛𝑒𝑔𝑙(λ)

where b is uniformly distributed over 0, 1 .

Formal Definition (Computational)
Def: (Enc, Dec) is a statistically (resp. computationally) secure wiretap
coding scheme for wiretap channel (ChB, ChE) if
• Correctness: For all messages m ∈ 0, 1 ,

Pr 𝐷𝑒𝑐 1!, 𝐶ℎ𝐵 𝐸𝑛𝑐 1!, 𝑚 = 𝑚 ≥ 1 − 𝑛𝑒𝑔𝑙(λ)

• Security: For all (resp. non-uniform polynomial-time) adversaries A,

Pr 𝐴 1!, 𝐶ℎ𝐸 𝐸𝑛𝑐 1!, 𝑏 = 𝑏 ≤ "
#
+ 𝑛𝑒𝑔𝑙(λ)

where b is uniformly distributed over 0, 1 .

• (Computational Definition Only): (Enc, Dec) are PPT algorithms.

Formal Definition (Computational)
Def: (Enc, Dec) is a statistically (resp. computationally) secure wiretap
coding scheme for wiretap channel (ChB, ChE) if
• Correctness: For all messages m ∈ 0, 1 ,

Pr 𝐷𝑒𝑐 1!, 𝐶ℎ𝐵 𝐸𝑛𝑐 1!, 𝑚 = 𝑚 ≥ 1 − 𝑛𝑒𝑔𝑙(λ)

• Security: For all (resp. non-uniform polynomial-time) adversaries A,

Pr 𝐴 1!, 𝐶ℎ𝐸 𝐸𝑛𝑐 1!, 𝑏 = 𝑏 ≤ "
#
+ 𝑛𝑒𝑔𝑙(λ)

where b is uniformly distributed over 0, 1 .

• (Computational Definition Only): (Enc, Dec) are PPT algorithms.

Our results also generalize to larger message spaces.

Simple Impossibility

ChEChB ChS=

Observation: In this case, Eve can learn the same
distribution Bob learns, so wiretap coding is impossible.

Def: ChB is a degradation of ChE if there exists a channel ChS such that

Simple Impossibility

BEC2pBSCp
Randomly guess

for erasures=

Observation: In this case, Eve can learn the same
distribution Bob learns, so wiretap coding is impossible.

Def: ChB is a degradation of ChE if there exists a channel ChS such that

ex)

Information Theoretic Setting

Can we create a wiretap coding scheme whenever
ChB is not a degradation of ChE?

Information Theoretic Setting

[CK78] Wiretap coding schemes are possible if and only if
ChE is not less noisy than ChB.

Can we create a wiretap coding scheme whenever
ChB is not a degradation of ChE?

No!

(Not) Less Noisy [CK78]

ChB

ChE

X Y

Z

M
“Encode”

H(M | Y) < H(M | Z)

Def: ChE is not less noisy than ChB if there exists a Markov chain M→X→YZ
where pY|X(y|x) corresponds to ChB, pZ|X(z|x) corresponds to ChE, and

Bob has an
advantage over
Eve in terms of

conditional
entropy.

X is a one symbol
encoding of M

Information Theoretic Impossibility

Less Noisy

Degraded
(Impossibility)

Less Noisy
(Impossibility)

Secure Wiretap
Coding

p

ε	– 2p

(BSC0.1, BEC0.3)

ex) ChB = BSCp ChE = BECε
[Nair10]

Information Theoretic Impossibility

Less Noisy

Degraded
(Impossibility)

Less Noisy
(Impossibility)

Secure Wiretap
Coding

p

ε	– 2p

(BSC0.1, BEC0.3)

ex) ChB = BSCp ChE = BECε
[Nair10]

Can we do better in the computational setting?

Computational Assumptions and Feasibility
Results

Information Theoretic Computational

Secure Encryption key length ≥	message	length
[Shannon1949]

Fixed key length, unlimited messages
(1970s)

Secure Multi-Party
Computation

Honest majority of parties needed
[BGW88,CCD88]

Only need one honest party
[GMW87]

Secure Wiretap
Coding Schemes

Introduced [Wyner75],
"Less Noisy" characterization [CK78]

OPEN
Until our paper [IKLS22] in 2022,

no improvement

Computational Setting

Can we create a wiretap coding scheme whenever
ChB is not a degradation of ChE?

Recall: Impossible (even computationally) if
ChB is a degradation of ChE.

Computational Setting

Our Work [IKLS22]: Assuming secure evasive function obfuscation for
the class of generalized fuzzy point functions,

Yes!

Can we create a wiretap coding scheme whenever
ChB is not a degradation of ChE?

wiretap coding schemes are possible if and only if
ChB is not a degradation of ChE.

Computational Setting

Our Work [IKLS22]: Assuming secure evasive function obfuscation for
the class of generalized fuzzy point functions,

Yes!

Can we create a wiretap coding scheme whenever
ChB is not a degradation of ChE?

wiretap coding schemes are possible if and only if
ChB is not a degradation of ChE.

Follow-up [IJLSZ22]: Assuming indistinguishability
obfuscation and injective PRGs, for binary input

channel pairs (ChB, ChE):

Computational wiretap coding schemes are possible if
and only if ChB is not a degradation of ChE.

Construction of Wiretap Coding
Schemes via Program
Obfuscation
Based on joint work with Yuval Ishai, Alexis Korb, Amit Sahai [IKLS22]

Starting Point: Example

ChB is not a degradation of ChE.

ChE is less noisy than ChB [Nair10]
(and hence wiretap coding impossible

information theoretically [CK78])
Less Noisy

(Impossibility)

Secure Wiretap
Coding

p

ε	– 2p

(BSC0.1, BEC0.3)

ex) ChB = BSC0.1, ChE = BEC0.3

Example: ChB = BSC0.1, ChE = BEC0.3

ChB = BSC0.1

ChE = BEC0.3

r rB

rE

rB contains
~10% bit flips
relative to r

rE contains
~30% erasures

relative to r

Example: ChB = BSC0.1, ChE = BEC0.3

Observation: If r ∈ 0,1 ! is uniformly random, then w.h.p. Eve cannot
find a string that contains ~10% bit flips relative to r.

ChB = BSC0.1

ChE = BEC0.3

r rB

rE

rB contains
~10% bit flips
relative to r

rE contains
~15% bit flips
relative to r

r'
Eve’s Best Strategy:
Assign erased bits a

random value.

Example: ChB = BSC0.1, ChE = BEC0.3

Construction: Send a uniform random r ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of fr defined below.

fr(r’):
• Output m if r’ contains

~10% bit flips relative to r.
• Output ⊥	otherwise.

ChB = BSC0.1

ChE = BEC0.3

r rB

rE

Example: ChB = BSC0.1, ChE = BEC0.3

Construction: Send a uniform random r ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of fr defined below.

fr(r’):
• Output m if r’ contains

~10% bit flips relative to r.
• Output ⊥	otherwise.

ChB = BSC0.1

ChE = BEC0.3

r rB

rE

Correctness:
fr(rB) = m with high

probability

Example: ChB = BSC0.1, ChE = BEC0.3

Construction: Send a uniform random r ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of fr defined below.

fr(r’):
• Output m if r’ contains

~10% bit flips relative to r.
• Output ⊥	otherwise.

ChB = BSC0.1

ChE = BEC0.3

r rB

rE

Correctness:
fr(rB) = m with high

probability

Security:
• W.h.p. Eve cannot find

an r’ such that fr(r’) = m.
• Obfuscation hides value

of m in this case.

General Case

General Case: Not Degraded

ChEChB ChS≠

For every ChS, there exists (x*, y*) such that

Def: ChB is not a degradation of ChE if for all channels ChS we have:

𝑃𝑟 𝐶ℎ𝐵 𝑥∗ = 𝑦∗ − 𝑃𝑟 𝐶ℎ𝑆(𝐶ℎ𝐸 𝑥∗) = 𝑦∗ > 0

In fact, we can show the difference is at least some constant
dependent on ChB and ChE.

General Case: Not Degraded
Construction: Send a uniform random r ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of fr defined below.

ChB

ChE

r rB

rE

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
~ as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

General Case: Not Degraded
Construction: Send a uniform random r ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of fr defined below.

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
~ as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

ChB

ChE

r rB

rE

Correctness:
fr(rB) = m with high

probability

General Case: Not Degraded
Construction: Send a uniform random r ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of fr defined below.

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
~ as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

ChB

ChE

r rB

rE

Correctness:
fr(rB) = m with high

probability

Security:
???

General Case: Not Degraded
Observation: If Eve’s strategy for finding inputs r’ for fr is to apply a DMC
ChS to rE, then we can prove security.

ChB

ChE

r rB

rE ChS r’

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
~ as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

General Case: Not Degraded
Observation: If Eve’s strategy for finding inputs r’ for fr is to apply a DMC
ChS to rE, then we can prove security.

ChB

ChE

r rB

rE ChS r’

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
~ as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

1) Since 𝐶ℎ𝐵 is not a degradation of
𝐶ℎ𝐸, there exists (𝑥∗, 𝑦∗) such that
Pr[𝐶ℎ𝑆(𝐶ℎ𝐸(𝑥∗)) = 𝑦∗] differs
from Pr[𝐶ℎ𝐵(𝑥∗) = 𝑦∗].

General Case: Not Degraded
Observation: If Eve’s strategy for finding inputs r’ for fr is to apply a DMC
ChS to rE, then we can prove security.

ChB

ChE

r rB

rE ChS r’

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
~ as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

2) Thus, w.h.p., fr(r’) = ⊥ as the
check fails on (x*, y*).

1) Since 𝐶ℎ𝐵 is not a degradation of
𝐶ℎ𝐸, there exists (𝑥∗, 𝑦∗) such that
Pr[𝐶ℎ𝑆(𝐶ℎ𝐸(𝑥∗)) = 𝑦∗] differs
from Pr[𝐶ℎ𝐵(𝑥∗) = 𝑦∗].

General Case: Not Degraded
Observation: If Eve’s strategy for finding inputs r’ for fr is to apply a DMC
ChS to rE, then we can prove security.

ChB

ChE

r rB

rE ChS r’

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
~ as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

2) Thus, w.h.p., fr(r’) = ⊥ as the
check fails on (x*, y*).

3) Obfuscation hides m in this case.

1) Since 𝐶ℎ𝐵 is not a degradation of
𝐶ℎ𝐸, there exists (𝑥∗, 𝑦∗) such that
Pr[𝐶ℎ𝑆(𝐶ℎ𝐸(𝑥∗)) = 𝑦∗] differs
from Pr[𝐶ℎ𝐵(𝑥∗) = 𝑦∗].

General Case: Not Degraded
Observation: If Eve’s strategy for finding inputs 𝑟’ for 𝑓𝑟 is to apply a DMC
𝐶ℎ𝑆 to 𝑟𝐸, then we can prove security.

ChB

ChE

r rB

rE r’

Issue: Eve can use any
arbitrary strategy g (not
necessarily a DMC) to

find r’!g

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
~ as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

Proving Security
Goal: Show that for any strategy 𝑔, there exists a DMC 𝐶ℎ𝑆 and a
polynomial 𝑝 such that

Eve cannot do much better by using 𝑔 than by using 𝐶ℎ𝑆!
This gives us security!

We show this via a hybrid argument.

Pr 𝑓6 𝑔 𝑟7 = 𝑚 ≤ p n Pr 𝑓6 𝐶ℎ𝑆 𝑟7 = 𝑚 + 𝑛𝑒𝑔𝑙(𝑛)

𝑖𝑂-based Construction of
Computational Wiretap Coding
Schemes for Binary Input Channels
Based on joint work with Yuval Ishai, Aayush Jain, Amit Sahai, Mark Zhandry [IJLSZ22]

Construction Road Map

1. The setting of the binary asymmetric
channels (BAC) and binary asymmetric
erasure channels (BAEC): an 𝑖𝑂 + injective
PRG based construction.

2. Polytope formulation of degradation

3. Reducing constructing a computational
wiretap coding scheme for any pair of binary
input channels to the asymmetric case.

Indistinguishability Obfuscation (𝑖𝑂) [BGIRSVY01]

A secure indistinguishability obfuscation (𝑖𝑂) scheme satisfies
(informally)
• Completeness:

• Indistinguishability: Circuits C0 and C1 of same size, same input length, same
output length, and functionally equivalent satisfy:

𝐶 𝑖𝑂(𝐶)≡

𝑖𝑂(𝐶1)≈c𝑖𝑂(𝐶0)

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 0.1𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

Warm-up: ChB = BSC0.1, ChE = BEC0.3

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BSC0.1

ChE = BEC0.3

𝑟 𝑟𝐵

𝑟𝐸

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 0.1𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

Warm-up: ChB = BSC0.1, ChE = BEC0.3

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BSC0.1

ChE = BEC0.3

𝑟 𝑟𝐵

𝑟𝐸

Correctness:
𝑓𝑟(𝑟𝐵) = 𝑚 with high

probability

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 0.1𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

Warm-up: ChB = BSC0.1, ChE = BEC0.3

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BSC0.1

ChE = BEC0.3

𝑟 𝑟𝐵

𝑟𝐸

Correctness:
𝑓𝑟(𝑟𝐵) = 𝑚 with high

probability

Security:
• W.h.p. Eve cannot find an
𝑟’ such that 𝑓𝑟(𝑟’) = 𝑚.

• Why does 𝑖𝑂(𝑓𝑟) hide m?

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 0.1𝑛 + 𝑛:.; output 𝑚
• Output ⊥	otherwise.

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 0.1𝑛 + 𝑛:.; output 𝑚
• Output ⊥	otherwise.

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

Using standard hybrid techniques
involving 𝑖𝑂, can show that this circuit is
computationally indistinguishable from a

circuit that always outputs ⊥.

𝑓𝑟(𝑟’):
• Output ⊥

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

Using standard hybrid techniques
involving 𝑖𝑂, can show that this circuit is
computationally indistinguishable from a

circuit that always outputs ⊥.

𝑓𝑟(𝑟’):
• Output ⊥

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

A key step in this argument is that, from
Eve’s point of view, each erasure is

equally likely to be 0 or 1.

Asymmetric Binary Channels

0

1

0

1

𝑝"

𝑝:

1 − 𝑝:

1 − 𝑝"

0

1

0

1

⊥

1 − 𝑒"

1 − 𝑒:

Binary Asymmetric Channel (BAC) Binary Asymmetric Erasure Channel (BAEC)

𝑒:

𝑒"

Asymmetric Binary Channels

0

1

0

1

𝑝"

𝑝:

1 − 𝑝:

1 − 𝑝"

0

1

0

1

⊥

1 − 𝑒"

1 − 𝑒:

𝑒:

𝑒"

Binary Asymmetric Channel (BAC) Binary Asymmetric Erasure Channel (BAEC)

1 − 𝑝! 𝑝!
𝑝" 1 − 𝑝"

1 − 𝑒! 0 𝑒!
0 1 − 𝑒" 𝑒"

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < ? 𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < ? 𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸

What is the expected Hamming distance
of ∆ 𝑟𝐵 , 𝑟 ?

What is the expected number of
erasures received? And what is Eve’s

best strategy to recover 𝑚?

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < ? 𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸

What is the expected Hamming distance
of ∆ 𝑟𝐵 , 𝑟 ?

What is the expected number of
erasures received? And what is Eve’s

best strategy to recover 𝑚?

Value should be the expected Hamming
distance of ∆ 𝑟𝐵 , 𝑟 .

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < ? 𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸
What is Eve’s best strategy to recover
𝑚? If erasures were equally likely to be

0 or 1, then it’s random guessing!

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < ? 𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸 Unfortunately, erasures are not equally
likely to have been 0 or 1.

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < ? 𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Send a uniform random 𝑟 ∈ 0,1 ! across the wiretap
channel. Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸 Unfortunately, Erasures are not equally
likely to have been 0 or 1.

Simple Fix: Pick a distribution such that erasures are equally
likely to have been 0 or 1.

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < ? 𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < ? 𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸 Erasures are now equally likely to have
been 0 or 1.

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸 Erasures are now equally likely to have
been 0 or 1.

What is the expected Hamming distance
of t = ∆ 𝑟𝐵 , 𝑟 ?

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸

t =
𝑒!𝑝" + 𝑒"𝑝!
𝑒!+𝑒"

Erasures are now equally likely to have
been 0 or 1.

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸 What is the expected number of
erasures received?

t =
𝑒!𝑝" + 𝑒"𝑝!
𝑒!+𝑒"

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸 2𝑒!𝑒"
𝑒!+𝑒"

t =
𝑒!𝑝" + 𝑒"𝑝!
𝑒!+𝑒"

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸
#$!$"
$!+$" . What about the expected

Hamming distance of Eve’s best guess?

t =
𝑒!𝑝" + 𝑒"𝑝!
𝑒!+𝑒"

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸
𝑒!𝑒"
𝑒!+𝑒"

t =
𝑒!𝑝" + 𝑒"𝑝!
𝑒!+𝑒"

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸
𝑒!𝑒"
𝑒!+𝑒"

t =
𝑒!𝑝" + 𝑒"𝑝!
𝑒!+𝑒"

For Bob to have an advantage, we
need $!%"&$"%!

$!+$" < $!$"
$!+$" .

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

ChB = BAC𝑝!, 𝑝"

ChE = BAEC𝑒!, 𝑒"

𝑟 𝑟𝐵

𝑟𝐸
𝑒!𝑒"
𝑒!+𝑒"

t =
𝑒!𝑝" + 𝑒"𝑝!
𝑒!+𝑒"

For Bob to have an advantage, we
need $!%"&$"%!

$!+$" < $!$"
$!+$" .

Turns out, non-degradation condition
is exactly

𝑒!𝑝" + 𝑒"𝑝! < 𝑒!𝑒".

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 𝑡𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

𝑟𝐸

Having established that Bob has an
advantage whenever ChB is a non-
degradation of ChE, use the same

standard hybrid techniques involving
𝑖𝑂 as those in the symmetric case.

Eve’s Viewpoint

𝑓𝑟(𝑟’):
• Output ⊥.

ChB = BAC
𝑝& , 𝑝'

, ChE = BAEC
𝑒& , 𝑒'

Construction: Sample 𝑟 ∈ 0,1 ' such that each bit of 𝑟 is 0 with
probability ($

(%+($ and 1 otherwise. Send 𝑟 across the wiretap channel.
Then, send across an obfuscation of 𝑓𝑟 defined below.

𝑟𝐸

Having established that Bob has an
advantage whenever ChB is a non-
degradation of ChE, use the same

standard hybrid techniques involving
𝑖𝑂 as those in the symmetric case.

Eve’s Viewpoint

Construction Road Map

1. The setting of the binary asymmetric
channels (BAC) and binary asymmetric
erasure channels (BAEC): an 𝑖𝑂 + injective
PRG based construction.

2. Polytope formulation of degradation

3. Reducing constructing a computational
wiretap coding scheme for any pair of binary
input channels to the asymmetric case.

Motivating the Polytope Formulation

1. How did we obtain our degradation condition for the asymmetric
setting?

2. Why is constructing a computational wiretap coding scheme for
the asymmetric case sufficient for constructing a computational
wiretap coding scheme for any pair of non-degraded binary input
channels ?

A New Polytope formulation

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be
defined in either of the following equivalent ways:
• 𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.
• 𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1, 𝑣# ∈ [0,1] .

A New Polytope formulation

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be
defined in either of the following equivalent ways:
• 𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.
• 𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1, 𝑣# ∈ [0,1] .

Theorem: Let 𝐵 ∈ ℝ#×H! and E ∈ ℝ#×H" be arbitrary row-stochastic
matrices. Then, 𝐵 ≠ 𝐸 ? 𝑆 for every row stochastic matrix 𝑆 if and only

if 𝒫 𝐵 ⊈ 𝒫 𝐸 .

A New Polytope formulation

Def: [Channel Polytope] Let 𝐴 be a matrix of non-negative entries. We
associate to 𝐴 the following polytope, denoted 𝒫(𝐴), which can be
defined in either of the following equivalent ways:
• 𝒫(𝐴), is the convex hull of all subset-sums of columns of 𝐴.
• 𝒫 𝐴 = 𝐴𝑣 ∶ 0 ≤ 𝑣 ≤ 1, 𝑣# ∈ [0,1] .

Theorem: Let 𝐵 ∈ ℝ#×H! and E ∈ ℝ#×H" be arbitrary row-stochastic
matrices. Then, 𝐵 ≠ 𝐸 ? 𝑆 for every row stochastic matrix 𝑆 if and only

if 𝒫 𝐵 ⊈ 𝒫 𝐸 .

If row count > 2, then this is false.
Explicit counterexample for case of 3.

Polytope
Example

(0, 0)
x1

x2

(1 ≠ p0, p1)

(1, 1)

(p0, 1 ≠ p1)

(1 ≠ e0, 0)

(1, e1)

(0, 1 ≠ e1)

(e0, 1)

1 − 𝑝! 𝑝!
𝑝" 1 − 𝑝"

1 − 𝑒! 0 𝑒!
0 1 − 𝑒" 𝑒"

Binary Asymmetric Channel (BAC)

Binary Asymmetric Erasure Channel (BAEC)

Non-degradation
Formula

(0, 0)
x1

x2

(1 ≠ p0, p1)

(1, 1)

(p0, 1 ≠ p1)

(1 ≠ e0, 0)

(1, e1)

(0, 1 ≠ e1)

(e0, 1)

1 − 𝑝! 𝑝!
𝑝" 1 − 𝑝"

1 − 𝑒! 0 𝑒!
0 1 − 𝑒" 𝑒"

Binary Asymmetric Channel (BAC)

Binary Asymmetric Erasure Channel (BAEC)

This picture exactly gives the non-
degradation condition for the BAC-BAEC

case:

𝑒!𝑝" + 𝑒"𝑝! < 𝑒!𝑒".

Applications of the Polytope Formulation

1. How did we obtain our degradation condition for the asymmetric
setting?

2. Why is constructing a computational wiretap coding scheme for
the asymmetric case sufficient for constructing a computational
wiretap coding scheme for any pair of non-degraded binary input
channels ?

Construction Road Map

1. The setting of the binary asymmetric
channels (BAC) and binary asymmetric
erasure channels (BAEC): an 𝑖𝑂 + injective
PRG based construction.

2. Polytope formulation of degradation

3. Reducing constructing a computational
wiretap coding scheme for any pair of binary
input channels to the asymmetric case.

Pair of Arbitrary Binary Input Channels

Suppose (𝐵 =
𝑢"" ⋯ 𝑢"#$
𝑢$" ⋯ 𝑢$#$

, 𝐸 =
𝑢"" ⋯ 𝑢"#%
𝑢$" ⋯ 𝑢$#%

) such that 𝒫 𝐵 ⊈ 𝒫 𝐸 .

We want to…

1. [Bob’s Output Alphabet Reduction] find a matrix 𝐵% = 𝐵𝐴𝐶&&,&'such that
I. 𝒫 𝐵′ ⊆ 𝒫 𝐵 (Bob can perfectly simulate receiving an output from the channel

described by 𝐵′).
II. 𝒫 𝐵′ ⊈ 𝒫 𝐸 (Eve cannot simulate receiving an output from 𝐵′).

2. Matrix 𝐸% = 𝐵𝐴𝐸𝐶(&,(' such that
I. 𝒫 𝐸 ⊆ 𝒫 𝐸% (Eve that receives an output from 𝐸% can perfectly simulate receiving an

output from 𝐸).
II. 𝒫 𝐵′ ⊈ 𝒫 𝐸′ (Eve that receives an output from 𝐸% cannot simulate receiving an output

from 𝐵′).

Pair of Arbitrary Binary Input Channels

Suppose (𝐵 =
𝑢"" ⋯ 𝑢"#$
𝑢$" ⋯ 𝑢$#$

, 𝐸 =
𝑢"" ⋯ 𝑢"#%
𝑢$" ⋯ 𝑢$#%

) such that 𝒫 𝐵 ⊈ 𝒫 𝐸 .

ChB

ChE

ChPost𝑟 𝑟!

𝑟"

𝑟!#

ChB’ described by 𝐵′

Bob’s Output Alphabet Reduction

Suppose (𝐵 =
𝑢)) ⋯ 𝑢)'&
𝑢*) ⋯ 𝑢*'&

, 𝐸 =
𝑢)) ⋯ 𝑢)''
𝑢*) ⋯ 𝑢*''

) such that 𝒫 𝐵 ⊈
𝒫 𝐸 .

Take any extreme point 𝑢∗ (a 0/1 combination of the columns of 𝐵) of 𝒫 𝐵
not contained in 𝒫 𝐸 .

Bob’s Output Alphabet Reduction

Suppose (𝐵 =
𝑢)) ⋯ 𝑢)'&
𝑢*) ⋯ 𝑢*'&

, 𝐸 =
𝑢)) ⋯ 𝑢)''
𝑢*) ⋯ 𝑢*''

) such that 𝒫 𝐵 ⊈
𝒫 𝐸 .

Take any extreme point 𝑢∗ (a 0/1 combination of the columns of 𝐵) of
𝒫 𝐵 not contained in 𝒫 𝐸 .

Then 𝐵′ =
𝑢)∗ 1 − 𝑢)∗
𝑢*∗ 1 − 𝑢*∗

is such that both

𝒫 𝐵′ ⊆ 𝒫 𝐵 and 𝒫 𝐵 ⊈ 𝒫 𝐸

Pair of Arbitrary Binary Input Channels

Suppose (𝐵 =
𝑢"" ⋯ 𝑢"#$
𝑢$" ⋯ 𝑢$#$

, 𝐸 =
𝑢"" ⋯ 𝑢"#%
𝑢$" ⋯ 𝑢$#%

) such that 𝒫 𝐵 ⊈ 𝒫 𝐸 .

We want to…

1. [Bob’s Output Alphabet Reduction] find a matrix 𝐵% = 𝐵𝐴𝐶&&,&'such that
I. 𝒫 𝐵′ ⊆ 𝒫 𝐵 (Bob can perfectly simulate receiving an output from the channel

described by 𝐵′).
II. 𝒫 𝐵′ ⊈ 𝒫 𝐸 (Eve cannot simulate receiving an output from 𝐵′).

2. [Reducing Eve to the Erasure Case] find a matrix 𝐸% = 𝐵𝐴𝐸𝐶(&,(' that describes a channel that
gives Eve even more information than if her channel was 𝐸 yet this channel will still not be
informative enough to simulate 𝐵%.

Pair of Arbitrary Binary Input Channels

Suppose (𝐵 =
𝑢"" ⋯ 𝑢"#$
𝑢$" ⋯ 𝑢$#$

, 𝐸 =
𝑢"" ⋯ 𝑢"#%
𝑢$" ⋯ 𝑢$#%

) such that 𝒫 𝐵 ⊈ 𝒫 𝐸 .

We want to…

1. [Bob’s Output Alphabet Reduction] find a matrix 𝐵% = 𝐵𝐴𝐶&&,&'such that
I. 𝒫 𝐵′ ⊆ 𝒫 𝐵 (Bob can perfectly simulate receiving an output from the channel

described by 𝐵′).
II. 𝒫 𝐵′ ⊈ 𝒫 𝐸 (Eve cannot simulate receiving an output from 𝐵′).

2. [Reducing Eve to the Erasure Case] find a matrix 𝐸% = 𝐵𝐴𝐸𝐶(&,(' such that
I. 𝒫 𝐸 ⊆ 𝒫 𝐸% (Eve that receives an output from 𝐸% can perfectly simulate receiving an

output from 𝐸).
II. 𝒫 𝐵′ ⊈ 𝒫 𝐸′ (Eve that receives an output from 𝐸% cannot simulate receiving an output

from 𝐵′).

Reducing Eve’s
Channel to a
BAEC

(0, 0)
x1

x2

ı

ı
Apply the strict separating hyperplane

theorem!

This olive polytope is the BAEC that
contains Eve’s channel’s polytope yet is not

contained by the BAC.

Pair of Arbitrary Binary Input Channels

Suppose (𝐵 =
𝑢"" ⋯ 𝑢"#$
𝑢$" ⋯ 𝑢$#$

, 𝐸 =
𝑢"" ⋯ 𝑢"#%
𝑢$" ⋯ 𝑢$#%

) such that 𝒫 𝐵 ⊈ 𝒫 𝐸 .

We want to…

1. [Bob’s Output Alphabet Reduction] find a matrix 𝐵% = 𝐵𝐴𝐶&&,&'such that
I. 𝒫 𝐵′ ⊆ 𝒫 𝐵 (Bob can perfectly simulate receiving an output from the channel

described by 𝐵′).
II. 𝒫 𝐵′ ⊈ 𝒫 𝐸 (Eve cannot simulate receiving an output from 𝐵′).

2. [Reducing Eve to the Erasure Case] find a matrix 𝐸% = 𝐵𝐴𝐸𝐶(&,(' such that
I. 𝒫 𝐸 ⊆ 𝒫 𝐸% (Eve that receives an output from 𝐸% can perfectly simulate receiving an

output from 𝐸).
II. 𝒫 𝐵′ ⊈ 𝒫 𝐸′ (Eve that receives an output from 𝐸% cannot simulate receiving an output

from 𝐵′).

Pair of Arbitrary Binary Input Channels

Suppose (𝐵 =
𝑢"" ⋯ 𝑢"#$
𝑢$" ⋯ 𝑢$#$

, 𝐸 =
𝑢"" ⋯ 𝑢"#%
𝑢$" ⋯ 𝑢$#%

) such that 𝒫 𝐵 ⊈ 𝒫 𝐸 .

A computational wiretap coding scheme for (𝐵, 𝐸):

1. 𝐸𝑛𝑐 1), 𝑏 : Use any computational wiretap encoding algorithm for (𝐵% = 𝐵𝐴𝐶&&,&' , 𝐸% =
𝐵𝐴𝐸𝐶(&,(') .

Pair of Arbitrary Binary Input Channels

Suppose (𝐵 =
𝑢"" ⋯ 𝑢"#$
𝑢$" ⋯ 𝑢$#$

, 𝐸 =
𝑢"" ⋯ 𝑢"#%
𝑢$" ⋯ 𝑢$#%

) such that 𝒫 𝐵 ⊈ 𝒫 𝐸 .

A computational wiretap coding scheme for (𝐵, 𝐸):

1. 𝐸𝑛𝑐 1), 𝑏 : Use any computational wiretap encoding algorithm for (𝐵% = 𝐵𝐴𝐶&&,&' , 𝐸% =
𝐵𝐴𝐸𝐶(&,(') .

2. 𝐷𝑒𝑐 1), 𝐶ℎ𝐵 𝐸𝑛𝑐 1), 𝑏 :

1. Perfectly simulate 𝐶ℎ𝐵′ 𝐸𝑛𝑐 1(, 𝑏 by using 𝐶ℎ𝐵 𝐸𝑛𝑐 1(, 𝑏 .

2. Use any computational wiretap decoding algorithm for (𝐵) = 𝐵𝐴𝐶*!,*" , 𝐸) = 𝐵𝐴𝐸𝐶,!,,").

Pair of Arbitrary Binary Input Channels

Suppose (𝐵 =
𝑢"" ⋯ 𝑢"#$
𝑢$" ⋯ 𝑢$#$

, 𝐸 =
𝑢"" ⋯ 𝑢"#%
𝑢$" ⋯ 𝑢$#%

) such that 𝒫 𝐵 ⊈ 𝒫 𝐸 .

A computational wiretap coding scheme for (𝐵, 𝐸):

1. 𝐸𝑛𝑐 1), 𝑏 : Use any computational wiretap encoding algorithm for (𝐵% = 𝐵𝐴𝐶&&,&' , 𝐸% =
𝐵𝐴𝐸𝐶(&,(') .

2. 𝐷𝑒𝑐 1), 𝐶ℎ𝐵 𝐸𝑛𝑐 1), 𝑏 :

1. Perfectly simulate 𝐶ℎ𝐵′ 𝐸𝑛𝑐 1(, 𝑏 by using 𝐶ℎ𝐵 𝐸𝑛𝑐 1(, 𝑏 .

2. Use any computational wiretap decoding algorithm for (𝐵) = 𝐵𝐴𝐶*!,*" , 𝐸) = 𝐵𝐴𝐸𝐶,!,,").

Correctness: Bob can perfectly simulate
ChB’

Security: Eve can perfectly simulate ChE using
ChE’. If she can break this coding scheme, she

can break the (𝐵% , 𝐸%) coding scheme.

Construction Road Map

1. The setting of the binary asymmetric
channels (BAC) and binary asymmetric
erasure channels (BAEC): an 𝑖𝑂 + injective
PRG based construction.

2. Polytope formulation of degradation

3. Reducing constructing a computational
wiretap coding scheme for any pair of binary
input channels to the asymmetric case.

Future Directions – Cryptography
1. Can we characterize channel degradation for higher dimensions than two and can we obtain an

𝑖𝑂-based solution for all higher dimensions?

2. Do we need program obfuscation to construct computational wiretap coding schemes?

3. More generally, what is the minimum cryptographic assumption that suffices for constructing
computational wiretap coding schemes?

4. Does the existence of a computational wiretap coding scheme, say for the pair of channels
𝐵𝑆𝐶*.", 𝐵𝐸𝐶*., imply key exchange in the plain model?

Future Directions – Coding Theory
For traditional error-correcting codes (ECCs) ,the task of correcting erasures is significantly easier
than correcting errors (e.g. bit flips).

In our work, we give a randomized encoding procedure such that, for parameters 𝑒 > 2𝑝,
correcting a 𝑝 fraction of random errors can be efficiently done while correcting a 𝑒 fraction of
random} erasures cannot be efficiently done.

1. Can we directly (not through program obfuscation) construct codes with these properties?

2. Moreover, can we construct one with a deterministic encoder?

• Can we design computational wiretap coding schemes from hard average-case problems (e.g. a
planted random CSP or a planted graph problem)?

Future Directions – Average-case Complexity
Theory

Can we design computational wiretap coding schemes from hard average-case problems (e.g. a
planted random CSP or a planted graph problem)?

• We require sharp thresholds at which the problem phase changes from easy to computationally
difficult.

• For example, for 𝐵𝑆𝐶&, 𝐵𝐸𝐶(, we have an inversion problem Ρ&,((𝑥) where one is given some
“side information" 𝑥’.

We desire that if 𝑥’ has a random 𝑝 fraction of errors, then recovering 𝑥 is easy, and instead if 𝑥’
has a random 𝑒 fraction of erasures, then recovering 𝑥 is hard.

Thank you!

Appendix: Statistically Evasive
Circuit Families

Statistically Evasive Circuit Collection with
Auxiliary Input

Let D be a distribution of circuits.
Let Aux be an auxiliary input generator.

For all unbounded oracle machines A that are limited to polynomially
many queries to their oracle and for all λ,

Pr 𝐶 𝐴$ 1%, 𝐴𝑢𝑥(1%, 𝐶 = 1; 𝐶 ← 𝐷 1% ≤ 𝑛𝑒𝑔𝑙(λ)

Statistically Evasive Circuit Collection with
Auxiliary Input

Let D be a distribution of circuits.
Let Aux be an auxiliary input generator.

For all unbounded oracle machines A that are limited to polynomially
many queries to their oracle and for all λ,

Pr 𝐶 𝐴$ 1%, 𝐴𝑢𝑥(1%, 𝐶 = 1; 𝐶 ← 𝐷 1% ≤ 𝑛𝑒𝑔𝑙(λ)

D will be a class of generalized
fuzzy point functions with a
randomly chosen center r.

Statistically Evasive Circuit Collection with
Auxiliary Input

Let D be a distribution of circuits.
Let Aux be an auxiliary input generator.

For all unbounded oracle machines A that are limited to polynomially
many queries to their oracle and for all λ,

Pr 𝐶 𝐴$ 1%, 𝐴𝑢𝑥(1%, 𝐶 = 1; 𝐶 ← 𝐷 1% ≤ 𝑛𝑒𝑔𝑙(λ)

D will be a class of generalized
fuzzy point functions with a
randomly chosen center r.

Aux = ChE(r)

Statistically Evasive Function Obfuscation
Let (D, Aux) be a statistically evasive circuit collection with auxiliary input.

Correctness: For all λ, all 𝐶 ← 𝐷 1M ,

Pr ∀𝑥, 𝑂𝑏𝑓 1%, 𝐶 𝑥 ≠ 𝐶(𝑥) ≤ 𝑛𝑒𝑔𝑙(λ)

VBB Security: For all polytime A, there exists a polytime oracle machine
Sim such that for all λ,

≤ 𝑛𝑒𝑔𝑙(λ)−Pr 𝑆𝑖𝑚$ 1%, 1|$|, 𝐴𝑢𝑥(1%, 𝐶) = 1; 𝐶 ← 𝐷 1%
Pr 𝐴 1%, 𝑂𝑏𝑓(1%, 𝐶), 𝐴𝑢𝑥(1%, 𝐶) = 1; 𝐶 ← 𝐷 1%

Statistically Evasive Function Obfuscation

• No impossibility results known for VBB obfuscation of statistically
evasive circuits!
• Previous impossibility results for evasive circuits require the auxiliary input to

statistically reveal non-trivial inputs.

• Plausible conjecture that iO achieves statistically evasive function
obfuscation since iO is a best possible obfuscator [GR07].
• [BSMZ16] gives a construction with security in an idealized weak

multilinear map model with no known attacks.

Appendix: Security Proof for 𝑖𝑂-
based construction.

Brief Sketch of Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 0.1𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

Security: What Does Eve See?

𝑟𝐸 = ⊥010⊥1011⊥ 𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1,	5,	10} S0,1 = [10] \ S⊥

𝑓𝑟(𝑟’):
• If ∆ 𝑟$, 𝑟 < 0.1𝑛 + 𝑛:.; output m
• Output ⊥	otherwise.

Security: An Indistinguishable Viewpoint (1)

𝑟𝐸 = ⊥010⊥1011⊥

𝑓(N)(𝑟’):
Constants: 𝑟, S⊥ .
• If ∆ 𝑟$S⊥, 𝑟S⊥ + ∆ 𝑟$S0,1, 𝑟S0,1 < 0.1𝑛 + 𝑛:.; output 𝑚
• Output ⊥	otherwise.

𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1,	5,	10} S0,1 = [10] \ S⊥

Security: An Indistinguishable Viewpoint (1)

𝑟𝐸 = ⊥010⊥1011⊥

𝑓(N)(𝑟’):
Constants: 𝑟, S⊥ .
• If ∆ 𝑟$S⊥, 𝑟S⊥ + ∆ 𝑟$S0,1, 𝑟S0,1 < 0.1𝑛 + 𝑛:.; output 𝑚
• Output ⊥	otherwise.

𝑟 = 1010010110

Eve does not know:Eve sees:

S⊥ = {1,	5,	10} S0,1 = [10] \ S⊥
Functionally

Equivalent to 𝑓𝑟(M)!!

Getting to the Null Circuit: The 𝑖𝑂 “PRG Trick”

Consider a length-tripling PRG 𝐺.

Sample a random element 𝛼.

𝑓(N)(𝑟’):
Constants: 𝑟, S⊥ , 𝐺.
• Add a conditional branch that doesn’t change the

functionality of the form: “If 𝐺 ? ≠ 𝐺 𝛼 , then output
⊥”.

• If ∆ 𝑟$S⊥, 𝑟S⊥ + ∆ 𝑟$S0,1, 𝑟S0,1 < 0.1𝑛 + 𝑛:.; output 𝑚
• Output ⊥	otherwise.

Getting to the Null Circuit: The 𝑖𝑂 “PRG Trick”

Consider a length-tripling PRG 𝐺.

Sample a random element 𝛼.

𝑓(N)(𝑟’):
Constants: 𝑟, S⊥ , 𝐺.
• Add a conditional branch that doesn’t change the

functionality of the form: “If 𝐺 ? ≠ 𝐺 𝛼 , then output
⊥”.

• If ∆ 𝑟$S⊥, 𝑟S⊥ + ∆ 𝑟$S0,1, 𝑟S0,1 < 0.1𝑛 + 𝑛:.; output 𝑚
• Output ⊥	otherwise.

Getting to the Null Circuit: The 𝑖𝑂 “PRG Trick”

Consider a length-tripling PRG 𝐺.

Sample a random element 𝛼.

𝑓(N)(𝑟’):
Constants: 𝑟, S⊥ , 𝐺.
• Add a conditional branch that doesn’t change the

functionality of the form: “If 𝐺 ? ≠ 𝐺 𝛼 , then output
⊥”.

• If ∆ 𝑟$S⊥, 𝑟S⊥ + ∆ 𝑟$S0,1, 𝑟S0,1 < 0.1𝑛 + 𝑛:.; output 𝑚
• Output ⊥	otherwise.

Goal: Switch 𝐺 𝛼 with a uniform
random 𝑅. With overwhelming

probability, 𝑅 is not in the image of 𝐺.
After the switch, the branch will always

execute, resulting in a null circuit.

“Code Offset” construction

𝑓(")(𝑟’):
Constants: 𝑟, S⊥𝑟S0,1

, 𝐺(𝛼), 𝑧
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0. If 𝑟′S⊥ and 𝑟S⊥ are close to each other, then
𝑧 + 𝑟′S⊥ + 𝑟S⊥ ≈ 𝒞 𝛼 .

By list-decoding, 𝐿 will therefore contain 𝛼.

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.

By injectivity of 𝐺, there’s a unique
preimage of 𝐺 𝛼 , so we can recover 𝛼.

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.

Why did we hide 𝒞 𝛼 ?

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0. Why did we hide 𝒞 𝛼 ?

Ultimately, we’ll want to switch 𝐺 𝛼 with
uniform random 𝑅, so there cannot be

other constants correlated with 𝛼.

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0. Why is 𝑧 uncorrelated with 𝛼?

Because from Eve’s point of view, every
erasure is equally likely to have been a 0 or

1, so 𝑟S⊥ is uniform random.

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0. Why is 𝑧 uncorrelated with 𝛼?

Because from Eve’s point of view, every
erasure is equally likely to have been a 0 or

1, so 𝑟S⊥ is uniform random.

We removed 𝑟S⊥!

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0. Why is 𝑧 uncorrelated with 𝛼?

Because from Eve’s point of view, every
erasure is equally likely to have been a 0 or

1, so 𝑟S⊥ is uniform random.

We removed 𝑟S⊥!

We still need to recover 𝑟S⊥ to
maintain functionality!!

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0. Why is 𝑧 uncorrelated with 𝛼?

Because from Eve’s point of view, every
erasure is equally likely to have been a 0 or

1, so 𝑟S⊥ is uniform random.

We removed 𝑟S⊥!

We still need to recover 𝑟S⊥ to
maintain functionality!!

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.

“Code Offset” construction

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.
Why is this functionally equivalent (w.h.p.) to 𝑓 " (M) ?

By the degradation condition, there will exist a choice
of constant 𝜀 such that whenever the Hamming

distance check passes, the initial recovery process
succeeds.

Using Pseudorandomness

𝑓(#)(𝑟’):
Constants: 𝑟S0,1

, 𝐺(𝛼), 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝐺 𝛼 , then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.

Using Pseudorandomness

𝑓([)(𝑟’):
Constants: 𝑟S0,1

, 𝑅, 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝑅, then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

3. Sample a uniform random 𝑅.

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.

Using Pseudorandomness

𝑓([)(𝑟’):
Constants: 𝑟S0,1

, 𝑅, 𝑧, S⊥
• Attempt to recover 𝛼: List-decode 𝑧 + 𝑟′S⊥ to obtain a list 𝐿.

• If for all 𝑠 ∈ 𝐿, 𝐺 𝑠 ≠ 𝑅, then output ⊥.
• Recover 𝑟S⊥ ← 𝒞 𝛼 + 𝑧.
• If ∆ 𝑟RS⊥, 𝑟S⊥ + ∆ 𝑟RS0,1

, 𝑟S0,1
< 0.1𝑛 + 𝑛:.S output 𝑚

• Output ⊥	otherwise.

1. Sample a random element 𝛼 in domain of 𝒞.

2. Hide 𝒞 𝛼 by producing 𝑧 ← 𝒞 𝛼 + 𝑟S⊥

3. Sample a uniform random 𝑅.

Injective length-tripling PRG 𝐺.

List-decodable error correcting code 𝒞
for up to "

#
− 𝜀 error rate for any

constant 𝜀 > 0.
With all but negligible probability (due to length-

tripling), 𝑅 will not be in the image of 𝐺.

Therefore, the circuit will always output ⊥

Using Pseudorandomness

𝑓(\)(𝑟’):
• Output ⊥.

Appendix: Optimal Rate

Optimal Rate

We can achieve optimal rate in the computational setting.
(Rate approaching capacity of ChB)

Optimal Rate

1. Send short secret key k
with wiretap coding.

Secure Wiretap
Coding

k
m

We can achieve optimal rate in the computational setting.
(Rate approaching capacity of ChB)

Optimal Rate

Secure Wiretap
Coding

Error Correcting
Code (ECC)Enc(k, m)

k
m

2. Send Enc(k, m)
using an optimal-
rate ECC for ChB

We can achieve optimal rate in the computational setting.
(Rate approaching capacity of ChB)

Appendix: Main Hybrid Argument
Details

Starting Point: Optimal Strategy g*

Let g* be any deterministic strategy that maximizes
Pr 𝑓6 𝑔∗ 𝑟7 = 𝑚

(WLOG, we can assume an optimal g* to be deterministic.)

H0: Add structure to g*

Let g* be any deterministic strategy that maximizes
Pr 𝑓6 𝑔∗ 𝑟7 = 𝑚

Key Observation: We can exploit symmetry!

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
is as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

H0: Add structure to g*

Let g* be any deterministic strategy that maximizes
Pr 𝑓6 𝑔∗ 𝑟7 = 𝑚

fr(r’):
• Output m if for all (x,y),
| 𝑖 ∈ 𝑛 : 𝑟# = 𝑥 𝑎𝑛𝑑 𝑟$# = 𝑦 |
is as expected for an r’ = ChB(r).

• Output ⊥	otherwise.

Key Observation: We can exploit symmetry!

fr only looks at the counts!

g* equally likely to win on
rE = π(s)	as	rE=	s

where	π	is	a	permutation.

H0: Add structure to g*

Let Eve0 be the following strategy:

b a c c b a crE

H0: Add structure to g*

Let Eve0 be the following strategy:

a a b b c c c

b a c c b a crE

π
1) Permute rE into the
lexicographically first
vector of same weight.

H0: Add structure to g*

Let Eve0 be the following strategy:

a a b b c c c 0 1 2 2 1 0 2

b a c c b a crE

g*
π

2) Apply g* to this
permuted vector.

H0: Add structure to g*

Let Eve0 be the following strategy:

a a b b c c c 0 1 2 2 1 0 2

b a c c b a c

2 0 1 0 2 1 2

rE

r’

g*
π

π-13) Apply the
permutation in reverse
to get r’.

H0: Add structure to g*

Let Eve0 be the following strategy:

a a b b c c c 0 1 2 2 1 0 2

b a c c b a c

2 0 1 0 2 1 2

rE

r’

g*
π

π-1

By symmetry, Eve0 as likely to win as g*!

H0: Add structure to g*

By symmetry, Eve0 is also an optimal strategy!

Nice Property: For any permutation π,	
π(Eve0(rE))	=	Eve0(π(rE))

Def: r and s have the same weight if there exists a permutation
π such	that	π(r)	=	s

Eve0 acts similarly on all vectors of the same weight.

H1: Randomize Eve0

Let Eve1 be the following strategy:

a a a a a b brE

H1: Randomize Eve0

Let Eve1 be the following strategy:

a a a a a b brE

Eve0
0 1 1 2 1 0 2

1) Consider how Eve0
would act on rE.

H1: Randomize Eve0

Let Eve1 be the following strategy:

a a a a a b brE

Eve0
* 1 1 * 1 * *

2) Instead of deterministically
changing the 2nd, 3rd, and 5th

“a’s” to “1’s”, randomly pick
three “a’s” to change to “1’s”

Randomly	Pick

1 1 * 1 * * *

H1: Randomize Eve0

Let Eve1 be the following strategy:

a a a a a b brE

r’

Eve0
0 1 1 2 1 0 2

1 1 0 1 2 2 0 3) Do the same for all
input/output symbol pairs.

Randomly	Pick

H1: Randomize Eve0

Let Eve1 be the following strategy:

a a a a a b brE

r’

Eve0
0 1 1 2 1 0 2

1 1 0 1 2 2 0

Randomly	Pick

By symmetry, Eve1 as likely to win as Eve0!
Eve1 is an optimal strategy!

H2: Use an Input-Dependent Channel

Let Eve2 be the following strategy:

a a a a a b brE

H2: Use an Input-Dependent Channel

Let Eve2 be the following strategy:

a a a a a b brE

Eve0
0 1 1 2 1 0 2

1) Consider how Eve0
would act on rE.

H2: Use an Input-Dependent Channel

Let Eve2 be the following strategy:

a a a a a b brE

Eve0
0 1 1 2 1 0 2

ChSrE 0 1 2

a 1/5 3/5 1/5

b 1/2 0 1/2

2) Make a stochastic matrix
(channel) representing the
input/output probabilities.

H2: Use an Input-Dependent Channel

Let Eve2 be the following strategy:

a a a a a b brE

r’

Eve0
0 1 1 2 1 0 2

1 1 0 2 0 2 2

ChSrE
ChSrE 0 1 2

a 1/5 3/5 1/5

b 1/2 0 1/2

3) Generate r’ by running rE
through this channel.

H2: Use an Input-Dependent Channel

Let Eve2 be the following strategy:

a a a a a b brE

r’

Eve0
0 1 1 2 1 0 2

1 1 0 2 0 2 2

ChSrE
ChSrE 0 1 2

a 1/5 3/5 1/5

b 1/2 0 1/2

Security: With probability 1/poly(n), Eve2 acts exactly the same as Eve1!
(Probability that each input/output pair hits its expected value.)

H3: Use an Input-Independent Channel

Key Observation 1: For any permutation π,
ChSrE = ChSπ(rE)

Eve0 acts	similarly	on	all	vectors	of	the	same	weight!

H3: Use an Input-Independent Channel

Key Observation 1: For any permutation π,
ChSrE = ChSπ(rE)

Eve0 acts	similarly	on	all	vectors	of	the	same	weight!

Key Observation 2: There are only poly(n) different
weights.

H3: Use an Input-Independent Channel

Let Eve3 be the following strategy:

a a a a a b brE

H3: Use an Input-Independent Channel

Let Eve3 be the following strategy:

a a a a a b brE 1) Randomly pick a weight w.
Pick a random w.

H3: Use an Input-Independent Channel

Let Eve3 be the following strategy:

a a a a a b brE

r’

1 1 0 2 0 2 2

ChSw

Pick a random w.
2) Generate r’ by running rE
through ChSw where
ChSw = ChSt for any string t
of weight w.

H3: Use an Input-Independent Channel

Let Eve3 be the following strategy:

a a a a a b brE

r’

1 1 0 2 0 2 2

ChSw

Pick a random w.

Eve3 acts like Eve2 in this case!

Security: Since there are only
poly(n) many weights, then
with probability 1/poly(n),

ChSw = ChSrE

Security Summary
Goal: Show that for any strategy g, there exists a DMC ChS and a
polynomial p such that

Eve cannot do much better by using g than by using ChS!

Hybrids:
• Optimal Deterministic Strategy g*
• H0: Add structure to g*
• H1: Randomize
• H2: Use an input-dependent channel.
• H3: Use an input-independent channel (ChS).

Pr 𝑓6 𝑔 𝑟7 = 𝑚 ≤ p n ∗ Pr 𝑓6 𝐶ℎ𝑆 𝑟7 = 𝑚 + 𝑛𝑒𝑔𝑙(𝑛)

Conclusion

Main Theorem: Assuming secure evasive function obfuscation for the
class of generalized fuzzy point functions,

wiretap coding schemes are possible if and only if
ChB is not a degradation of ChE.

Less Noisy

DegradedImpossible (even
computationally)

Now possible
computationally!

(Information theoretically
impossible)

Conclusion

Extensions:
• Extends to general message spaces
• Optimal rate
• Universal encoding (encoding only depends on ChB, not ChE)

Main Theorem: Assuming secure evasive function obfuscation for the
class of generalized fuzzy point functions,

wiretap coding schemes are possible if and only if
ChB is not a degradation of ChE.

Conclusion

Extensions:
• Extends to general message spaces
• Optimal rate
• Universal encoding (encoding only depends on ChB, not ChE)

Main Theorem: Assuming secure evasive function obfuscation for the
class of generalized fuzzy point functions,

wiretap coding schemes are possible if and only if
ChB is not a degradation of ChE.

