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Formal Definition (Statistical)

Def: (Enc, Dec) is a secure wiretap coding scheme for
wiretap channel (ChB, ChE) if

* Correctness: For all messages m € {0, 1},
Pr [Dec (1% ChB (Enc(ﬂ, m))) = m] > 1 —negl())

* Security: yiy
Pr [A (1% ChE (Enc(ﬂ, b))) = b] <~ +negl(d)

where b is uniformly distributed over {0, 1}.
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Def: (Enc, Dec) is a statistically secure wiretap
coding scheme for wiretap channel (ChB, ChE) if

* Correctness: For all messages m € {0, 1},
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* Security: For all adversaries A,
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where b is uniformly distributed over {0, 1}.
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(Not) Less Noisy [CK78]

Def: ChE is not less noisy than ChB if there exists a Markov chain M>X->YZ
where pyx(y/[x) corresponds to ChB, p;/x{z|x) corresponds to ChE, and

HM | Y)<H(M | Z)

“Encode”
M > X ‘ - Y




Information Theoretic Impossibility

ex) ChB = BSC, ChE = BEC,
[Nairl0]
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Computational Assumptions and Feasibility

Secure Encryption

Secure Multi-Party
Computation

Secure Wiretap
Coding Schemes

Results

key length = message length
[Shannon1949]

Honest majority of parties needed
[BGW88,CCD88]

Introduced [Wyner75],
"Less Noisy" characterization [CK78]

Fixed key length, unlimited messages
(1970s)

Only need one honest party
[GMW87]

OPEN
Until our paper [IK S22] in 2022,
no improvement



Computational Setting

Can we create a wiretap coding scheme whenever
ChB is not a degradation of ChE?

s B
Recall: Impossible (even computationally) if

ChB is a degradation of ChE.




Computational Setting

Can we create a wiretap coding scheme whenever
ChB is not a degradation of ChE?

Yes!

Our Work [IKLS22]: Assuming secure evasive function obfuscation for
the class of generalized fuzzy point functions,

wiretap coding schemes are possible if and only if
ChB is not a degradation of ChE.




Computational Setting

Can we create a wiretan coqing neme \whenever

Follow-up [1JLSZ22]: Assuming indistinguishability
obfuscation and injective PRGs, for binary input
channel pairs (ChB, ChE):

Computational wiretap coding schemes are possible if
and only if ChB is not a degradation of ChE.




Construction of Wiretap Coding
Schemes via Program
Obfuscation

Based on joint work with Yuval Ishai, Alexis Korb, Amit Sahai [IKLS22]



Starting Point: Example

ex) ChB = BSCO.II ChE = BEC0'3




Example: ChB = BSC, ;, ChE = BEC, ,
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Example: ChB = BSC, ;, ChE = BEC, ,

Observation: If r € {0,1}" is uniformly random, then w.h.p. Eve cannot
find a string that contains ~10% bit flips relative to r.
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channel. Then, send across an obfuscation of f, defined below.
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General Case



General Case: Not Degraded

Def: ChB is not a degradation of ChE if for all channels ChS we have:

-

For every ChS, there exists (x*, y*) such that
|Pr|ChB(x*) = y*| — Pr[ChS(ChE(x™)) = y*]| >0

f

In fact, we can show the difference is at least some constant
dependent on ChB and ChE.
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General Case: Not Degraded

Observation: If Eve’s strategy for finding inputs 7’ for f .. is to apply a DMC
ChS to rg, then we can prove security.




Proving Security

Goal: Show that for any strategy g, there exists a DMC ChS and a
polynomial p such that

Pr[f,.(g(rE)) = m] < p(n)-Pr[ﬁ(ChS(rE)) = m] + negl(n)

We show this via a hybrid argument.



10-based Construction of
Computational Wiretap Coding
Schemes for Binary Input Channels

Based on joint work with Yuval Ishai, Aayush Jain, Amit Sahai, Mark Zhandry [|JLSZ22]



Construction Road Map

/

2. Polytope formulation of degradation

-




Indistinguishability Obfuscation (iO) [BGIRSVYO1]

A secure indistinguishability obfuscation (i0) scheme satisfies
(informally)

 Completeness:

C = i0(C)

* Indistinguishability: Circuits C,and C; of same size, same input length, same
output length, and functionally equivalent satisfy:

i0(Co)

2
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Warm-up: ChB = BSC, ,, ChE = BEC,, ,

Construction: Send a uniform random r € {0,1}" across the wiretap
channel. Then, send across an obfuscation of f, defined below.
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Warm-up: ChB = BSC, ,, ChE = BEC,, ,

Construction: Send a uniform random r € {0,1}" across the wiretap
channel. Then, send across an obfuscation of f, defined below.

Why does iO(f,) hide m?
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re= 10101011 r=101001011
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ChB=BAC , ChE =BAEC
Po, P1 €0, €1
Construction: Send a r € {0,1}" across the wiretap
channel. Then, send across an obfuscation of f, defined below.
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ChB =BAC , ChE = BAEC
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Po, P1

Construction: Sample r € {0,1}" such that each bl
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ChB =BAC , ChE = BAEC

Po» P1 €or €1

ConStrUCtlan Sample r E {O 1}n SUCh that eaCh bi/ For Bob to have an advantage’ we \
probablllty and 1 otherwise. Send r across | need PitePo o o1
el eo+61 eo+61
Then, send across an obfuscation of f, defined be
e Turns out, non-degradation condition
e is exactly

K €oP1 T €1Po < €péy. /
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Construction: Sample r € {0,1}" such that each bit of 7 is 0 with
probablllty , and 1 otherwise. Send r across the wiretap channel.
1

Then, send across an obfuscation of f. defmed below.

Eve’s Viewpoint




ChB =BAC , ChE = BAEC

Po» P1 €or €1

Construction: Sample r € {0,1}" such that each bit of 7 is 0 with
probablllty and 1 otherwise. Send r across the wiretap channel.

€1
Then, send across an obfuscation of f. deflned below.

Eve’s Viewpoint
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2. Polytope formulation of degradation
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Motivating the Polytope Formulation

1. How did we obtain our degradation condition for the asymmetric
setting?

2. Why is constructing a computational wiretap coding scheme for
the asymmetric case sufficient for constructing a computational
wiretap coding scheme for any pair of non-degraded binary input
channels ?



A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We
associate to A the following polytope, denoted P(A), which can be
defined in either of the following equivalent ways:

* P(A), is the convex hull of all subset-sums of columns of A.
*c P(A)={Av:0<v < 1,v; € [0,1]}.
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A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We
associate to A the following polytope, denoted P(A), which can be
defined in either of the following equivalent ways:

* P(A), is the convex hull of all subset-sums of columns of A.
*« P(A) ={Av:0<v<1,v €[01]}.

If row count > 2, then this is false.
Explicit counterexample for case of 3.




Binary Asymmetric Erasure Channel (BAEC)
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Binary Asymmetric Channel (BAC)

Polytope
Example




Binary Asymmetric Erasure Channel (BAEC)

[1_290 Po ] 1 —eg 0 €o
O 1_81 el

P1 1-ps
Binary Asymmetric Channel (BAC)

Non-degradation
Formula

-

This picture exactly gives the non-
degradation condition for the BAC-BAEC
case:

€oP1 T €1Po < €péj.

o




Applications of the Polytope Formulation

v/

2. Why is constructing a computational wiretap coding scheme for
the asymmetric case sufficient for constructing a computational
wiretap coding scheme for any pair of non-degraded binary input
channels ?



Construction Road Map




Pair of Arbitrary Binary Input Channels

Uip " Uing

_ ull e ulnE
Uy oo uZnB] , E = [ ] ) such that P(B) € P(E) .

Suppose(B=[ Upy - Upp,

We want to...

1.  [Bob’s Output Alphabet Reduction] find a matrix B’ = BAC,, p,such that

. P(B") € P(B) (Bob can perfectly simulate receiving an output from the channel
described by B’').

1.  P(B') € P(E) (Eve cannot simulate receiving an output from B’).



Pair of Arbitrary Binary Input Channels

ull soe ulnB ull coe

Ly uZnB],E=[u21 unE])suchthat?(B)g;?(E)

Suppose (B = [

ChB’ described by B’



Bob’s Output Alphabet Reduction

U = ulnB] E—[ull v Wang

u21 v uan ’ - u21 cos Uu TLE])SUCh that?(B) g
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Take any extreme point u* (a 0/1 combination of the columns of B) of P(B)
not contained in P(E).
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Take any extreme point u™ (a 0/1 combination of the columns of B) of
P (B) not contained in P(E).

ES 1 . X
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P(B") < P(B) and P(B) ¢ P(E)



Pair of Arbitrary Binary Input Channels
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1. [Bob’s Output Alphabet Reduction] find a matrix B’ = BAC), p,such that
. P(B") € P(B) (Bob can perfectly simulate receiving an output from the channel

described by B’').
.  P(B') € P(E) (Eve cannot simulate receiving an output from B’). V

2. [Reducing Eve to the Erasure Case] find a matrix E' = BAEC,_ ., that describes a channel that

gives Eve even more information than if her channel was E yet this channel will still not be
informative enough to simulate B’.
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described by B’').
.  P(B') € P(E) (Eve cannot simulate receiving an output from B’). V

2. [Reducing Eve to the Erasure Case] find a matrix E' = BAEC,_ ., such that

. P(E) € P(E") (Eve that receives an output from E' can perfectly simulate receiving an
output from E).

.  P(B") € P(E') (Eve that receives an output from E’ cannot simulate receiving an output
from B’).



Reducing Eve’s
Channel to a

BAEC e
/ Apply the strict separating hyperplane

theorem!

This is the BAEC that
contains Eve’s channel’s polytope yet is not
K contained by the BAC.
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Pair of Arbitrary Binary Input Channels

Uip - U1nB] E—[ull "t Uing
)

Suppose B=[ =
ppose ( Upy v Usgn, Upy - Upp,

] ) such that P(B) ¢ P(E) .

A computational wiretap coding scheme for (B, E):

1. Enc(1%,b) : Use any computational wiretap encoding algorithm for (B’ = BAC E' =

Po,P1
BAECeO,el) .
2. Dec (17‘, ChB (Enc(lx, b))) :

1.  Perfectly simulate ChB’ (Enc(lx, b)) by using ChB (Enc(lx, b))
2. Use any computational wiretap decoding algorithm for (B = BAC, ,, , E' = BAEC,,,).



Pair of Arbitrary Binary Input Channels

Ug U1nB] E—[ull o Uing

Suppose B=[
ppose ( Upy - Upn, |’ Upy v Usgm,

] ) such that P(B) & P(E) .

A computational wiretap coding scheme for (B, E):

E' =

1. Enc(lk, b) : Use any computational wiretap encoding algorithm for (B’ = BAC
BAEC,, e, ) -

2. Dec (1% ChB (Enc(1%, b))) :

1.  Perfectly simulate ChB' (Enc(l", b)) by using ChB (Enc(l", b))
2. Use any computational wiretap decoding algorithm for (B" = BAC,, p,, , E' = BAEC, ).

Po,P1




Construction Road Map




Future Directions — Cryptography

Can we characterize channel degradation for higher dimensions than two and can we obtain an
10-based solution for all higher dimensions?

Do we need program obfuscation to construct computational wiretap coding schemes?

More generally, what is the minimum cryptographic assumption that suffices for constructing
computational wiretap coding schemes?

Does the existence of a computational wiretap coding scheme, say for the pair of channels
(BSCy 1, BEC, 3 ) imply key exchange in the plain model?



Future Directions — Coding Theory

For traditional error-correcting codes (ECCs) ,the task of correcting erasures is significantly easier
than correcting errors (e.g. bit flips).

In our work, we give a randomized encoding procedure such that, for parameterse > 2p,
correcting a p fraction of random errors can be efficiently done while correcting a e fraction of

random} erasures cannot be efficiently done.

1. Can we directly (not through program obfuscation) construct codes with these properties?

2. Moreover, can we construct one with a deterministic encoder?

e Can we design computational wiretap coding schemes from hard average-case problems (e.g. a
planted random CSP or a planted graph problem)?



Future Directions — Average-case Complexity
Theory

Can we design computational wiretap coding schemes from hard average-case problems (e.g. a
planted random CSP or a planted graph problem)?

* We require sharp thresholds at which the problem phase changes from easy to computationally
difficult.

* For example, for (BSCp, BEC, ), we have an inversion problem P, . (x) where one is given some
“side information" x’.

We desire that if x’ has a random p fraction of errors, then recovering x is easy, and instead if x’
has a random e fraction of erasures, then recovering x is hard.
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Appendix: Statistically Evasive
Circuit Families



Statistically Evasive Circuit Collection with
Auxiliary Input

Let D be a distribution of circuits.

Let Aux be an auxiliary input generator.
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Statistically Evasive Circuit Collection with
Auxiliary Input

Let D be a distribution of circuits.
Let Aux be an auxiliary input generator.



Statistically Evasive Function Obfuscation

Let (D, Aux) be a statistically evasive circuit collection with auxiliary input.




Statistically Evasive Function Obfuscation

* No impossibility results known for VBB obfuscation of statistically
evasive circuits!

* Previous impossibility results for evasive circuits require the auxiliary input to
statistically reveal non-trivial inputs.

* Plausible conjecture that iO achieves statistically evasive function
obfuscation since iO is a best possible obfuscator [GRO7].

* [BSMZ16] gives a construction with security in an idealized weak
multilinear map model with no known attacks.



Appendix: Security Proof for iO-
based construction.



Brief Sketch of Security: What Does Eve See?

Eve sees: Eve does not know:

re= 10101011 r=101001011




Security: What Does Eve See?

Eve sees:

re= 10101011
S, ={1,5,10} So1 =

Eve does not know:
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Security: An Indistinguishable Viewpoint (1)

Eve sees:

r.= 01011011
s, ={1,5,10}

50,1 =[10]\ S,

Eve does not know:

T =

01001011



Security: An Indistinguishable Viewpoint (1)

Eve sees: Eve does not know:

010:1011

" r=101001011

s, ={1,5,10
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Consider a length-tripling PRG .

Sample a random element «a.
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Using Pseudorandomness

Injective length-tripling PRG (.

List-decodable error correcting code C
1

forup to S — €errorrate for any

constant € > 0.

1. Sample a random element « in domain of C.

2. Hide C(«) by producing z « C(a) + rs,

3. Sample a uniform random R.
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List-decodable error correcting code C 2. Hide C(«) by producing z « C(a) + rs,
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Appendix: Main Hybrid Argument
Details



Starting Point: Optimal Strategy g*

Let g* be any deterministic strategy that maximizes

Pr(f.(g*(rg)) = m]

(WLOG, we can assume an optimal g* to be deterministic.)
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H,: Add structure to g*

Let Eve, be the following strategy:

-

2) Apply g* to this

permuted vector.




H,: Add structure to g*

Let Eve, be the following strategy:

|

-
T
a a b b C C C

*
a2 b b o c R

(3) Apply the 0
permutation in reverse
 togetr. P
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1 2 2 1 o0 2
n'll

o 1 0 2 1 2
|

l

Vi

I




H,: Add structure to g*

Let Eve, be the following strategy:

J E 3
T[-l
2 0 1 o 2 1 2
|

-
T
a a b b C C C

*

~

By symmetry, Eve, as likely to win as g*! } o

\




H,: Add structure to g*

By symmetry, Eve, is also an optimal strategy!

Def: r and s have the same weight if there exists a permutation
1t such that t(r) = s

Eve, acts similarly on all vectors of the same weight.
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H1: Randomize Eve,

Let Eve, be the following strategy:

a a a a a b b

J Randomly Pick

Eve,

3) Do the same for all
input/output symbol pairs.
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H1: Randomize Eve,

Let Eve, be the following strategy:

a a b b

J Randomly Pick

Eve,

r’ { By symmetry, Eve, as likely to win as Eve,!

Eve, is an optimal strategy!
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Let Eve, be the following strategy:
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Let Eve, be the following strategy:

a a a a b

b

Eve,

0 1 1 2 1 0

2

p
1) Consider how Eve,

would act on r¢
A

N




H2: Use an Input-Dependent Channel

Let Eve, be the following strategy:

Eve,

a a a a a b b

£ I
2) Make a stochastic matrix

(channel) representing the

input/output probabilities.
A\ /




H2: Use an Input-Dependent Channel

Let Eve, be the following strategy:

E
. veg
2
| a
] 3) Generate r’ by running r¢
r through this channel.
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H2: Use an Input-Dependent Channel

Let Eve, be the following strategy:

Eve,

{

Security: With probability 1/poly(n), Eve, acts exactly the same as Eve,!
(Probability that each input/output pair hits its expected value.)

:
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Let Eve; be the following strategy:

a a a a a b b

{1) Randomly pick a weight w. }

Pick a random w.
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Let Eve; be the following strategy:




Security Summary

Goal: Show that for any strategy g, there exists a DMC ChS and a
polynomial p such that

Pr|f,(g(rg)) = m| < p(n) * Pr|f,.(ChS(r5)) = m| + negl(n)

Hybrids:

 Optimal Deterministic Strategy g*

* Hy: Add structure to g*

* H;: Randomize

* H,: Use an input-dependent channel.

* Hj: Use an input-independent channel (ChS).



Conclusion
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class of generalized fuzzy point functions,

ChB is not a degradation of ChE.
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Main Theorem: Assuming secure evasive function obfuscation for the

wiretap coding schemes are possible if and only if
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|

Impossible (even
computationally)

(¥

Now possible

computationally!
(Information theoretically

impossible)
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