Computational Wiretap Coding via Obfuscation

Paul Lou

Based on joint works with Yuval Ishai, Aayush Jain, Alexis Korb, Amit Sahai, & Mark Zhandry [IKLS22, IJLSZ22]

Wiretap Channel [Wyn75]

Goal: Alice wants to send a message to Bob without Eve learning it.

Wiretap Channel [Wyn75]

Goal: Alice wants to send a message to Bob without Eve learning it.

Formal Definition (Statistical)

Def: (*Enc, Dec*) is a **statistically** <u>secure wiretap coding scheme</u> for wiretap channel (*ChB, ChE*) if

- **Correctness:** For all messages $m \in \{0, 1\}$, $\Pr\left[Dec\left(1^{\lambda}, ChB\left(Enc(1^{\lambda}, m)\right)\right) = m\right] \ge 1 - negl(\lambda)$
- Security: For all adversaries A,

$$\Pr\left[A\left(1^{\lambda}, ChE\left(Enc(1^{\lambda}, b)\right)\right) = b\right] \leq \frac{1}{2} + negl(\lambda)$$

where *b* is uniformly distributed over $\{0, 1\}$.

Formal Definition (Computational)

Def: (*Enc, Dec*) is a statistically (resp. computationally) <u>secure wiretap</u> <u>coding scheme</u> for wiretap channel (*ChB, ChE*) if

- **Correctness:** For all messages $m \in \{0, 1\}$, $\Pr\left[Dec\left(1^{\lambda}, ChB\left(Enc(1^{\lambda}, m)\right)\right) = m\right] \ge 1 - negl(\lambda)$
- Security: For all (resp. non-uniform polynomial-time) adversaries A, $\Pr\left[A\left(1^{\lambda}, ChE\left(Enc(1^{\lambda}, b)\right)\right) = b\right] \leq \frac{1}{2} + negl(\lambda)$ where b is uniformly distributed over $\{0, 1\}$.
- (Computational Definition Only): (Enc, Dec) are PPT algorithms.

Formal Definition (Computational)

Def: (*Enc, Dec*) is a statistically (resp. computationally) <u>secure wiretap</u> <u>coding scheme</u> for wiretap channel (*ChB, ChE*) if

- **Correctness:** For all messages $m \in \{0, 1\}$, $\Pr\left[Dec\left(1^{\lambda}, ChB\left(Enc(1^{\lambda}, m)\right)\right) = m\right] \ge 1 - negl(\lambda)$
- Security: For all (resp. non-uniform polynomial-time) adversaries A, $\Pr\left[A\left(1^{\lambda}, ChE\left(Enc(1^{\lambda}, b)\right)\right) = b\right] \leq \frac{1}{2} + negl(\lambda)$ where b is uniformly distributed over $\{0, 1\}$.
- (Computational Definition Only): (Enc, Dec) are PPT algorithms.

Our results also generalize to larger message spaces.

Simple Impossibility

Def: ChB is a <u>degradation</u> of ChE if there exists a channel ChS such that

Observation: In this case, Eve can learn the same distribution Bob learns, so wiretap coding is impossible.

Simple Impossibility

Def: ChB is a <u>degradation</u> of ChE if there exists a channel ChS such that

Observation: In this case, Eve can learn the same distribution Bob learns, so wiretap coding is impossible.

Information Theoretic Setting

Can we create a wiretap coding scheme whenever ChB is not a <u>degradation</u> of ChE?

Information Theoretic Setting

Can we create a wiretap coding scheme whenever *ChB* is not a <u>degradation</u> of *ChE*?

No!

[CK78] Wiretap coding schemes are possible if and only if *ChE* is not <u>less noisy</u> than *ChB*.

(Not) Less Noisy [CK78]

Def: ChE is not less noisy than ChB if there exists a Markov chain $M \rightarrow X \rightarrow YZ$ where $p_{Y|X}(y|x)$ corresponds to ChB, $p_{Z|X}(z|x)$ corresponds to ChE, and

Information Theoretic Impossibility

Information Theoretic Impossibility

ex) $ChB = BSC_p$ $ChE = BEC_{\varepsilon}$

Computational Assumptions and Feasibility Results

	Information Theoretic	Computational
Secure Encryption	key length ≥ message length [Shannon1949]	Fixed key length, unlimited messages (1970s)
Secure Multi-Party Computation	Honest majority of parties needed [BGW88,CCD88]	Only need one honest party [GMW87]
Secure Wiretap Coding Schemes	Introduced [Wyner75], "Less Noisy" characterization [CK78]	OPEN Until our paper [IKLS22] in 2022, no improvement

Computational Setting

Can we create a wiretap coding scheme whenever *ChB* is not a <u>degradation</u> of *ChE*?

Recall: Impossible (even computationally) if *ChB* is a degradation of *ChE*.

Computational Setting

Can we create a wiretap coding scheme whenever *ChB* is not a <u>degradation</u> of *ChE*?

Yes!

Our Work [IKLS22]: Assuming secure evasive function obfuscation for the class of generalized fuzzy point functions, wiretap coding schemes are possible if and only if *ChB* is not a <u>degradation of *ChE*.</u>

Computational Setting

Can we create a wiretap coding scheme whenever

Follow-up [IJLSZ22]: Assuming indistinguishability obfuscation and injective PRGs, for binary input channel pairs (*ChB*, *ChE*):

Our V the cl Computational wiretap coding schemes are possible if and only if *ChB* is not a degradation of *ChE*.

n for

ChB is not a <u>degradation</u> of ChE.

Construction of Wiretap Coding Schemes via Program Obfuscation

Based on joint work with Yuval Ishai, Alexis Korb, Amit Sahai [IKLS22]

Starting Point: Example

Observation: If $r \in \{0,1\}^n$ is uniformly random, then w.h.p. Eve cannot find a string that contains ~10% bit flips relative to r.

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

f_r(r'):

- Output *m* if *r'* contains
 ~10% bit flips relative to *r*.
- Output \perp otherwise.

$$r \longrightarrow ChB = BSC_{0.1} \longrightarrow r_B$$
$$ChE = BEC_{0.3} \longrightarrow r_E$$

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

f_r(r'):

- Output *m* if *r'* contains
 ~10% bit flips relative to *r*.
- Output \perp otherwise.

$$r \longrightarrow ChB = BSC_{0.1} \longrightarrow r_B$$
$$ChE = BEC_{0.3} \longrightarrow r_E$$

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

f_r(r'):

- Output *m* if *r'* contains
 ~10% bit flips relative to *r*.
- Output \perp otherwise.

Security:

- W.h.p. Eve cannot find an r' such that f_r(r') = m.
- Obfuscation hides value of *m* in this case.

$$r \longrightarrow ChB = BSC_{0.1} \longrightarrow r_B$$
$$chE = BEC_{0.3} \longrightarrow r_E$$

General Case

Def: *ChB* is <u>not a degradation</u> of *ChE* if for all channels *ChS* we have:

For every *ChS*, there exists (x^*, y^*) such that $|Pr[ChB(x^*) = y^*] - Pr[ChS(ChE(x^*)) = y^*]| > 0$

In fact, we can show the difference is at least some constant dependent on *ChB* and *ChE*.

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

f_r(r'):

- Output *m* if for all (x,y), $|\{i \in [n]: r_i = x \text{ and } r'_i = y\}|$ ~ as expected for an r' = ChB(r).
- Output \perp otherwise.

Correctness: $f_r(r_B) = m$ with high probability

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

Observation: If Eve's strategy for finding inputs r' for f_r is to apply a DMC *ChS* to r_E , then we can prove security.

Observation: If Eve's strategy for finding inputs r' for f_r is to apply a DMC *ChS* to r_E , then we can prove security.

$f_{r}(r'):$ • Output *m* if for all (*x*, *y*), $|\{i \in [n]: r_{i} = x \text{ and } r'_{i} = y\}|$ ~ as expected for an r' = ChB(r).

• Output \perp otherwise.

1) Since *ChB* is not a degradation of *ChE*, there exists (x^*, y^*) such that $Pr[ChS(ChE(x^*)) = y^*]$ differs from $Pr[ChB(x^*) = y^*]$.

2) Thus, w.h.p., $f_r(r') = \bot$ as the check fails on (x^*, y^*) .

Case: Not Degraded

Observation: If Eve's strategy for finding inputs r' for f_r is to apply a DMC *ChS* to r_E , then we can prove security.

$f_r(r'):$ • Output *m* if for all (*x*, *y*), |{*i* ∈ [*n*]: $r_i = x$ and $r'_i = y$ }| ~ as expected for an r' = ChB(r).

• Output \perp otherwise.

1) Since ChB is not a degradation of ChE, there exists (x^*, y^*) such that $Pr[ChS(ChE(x^*)) = y^*]$ differs from $Pr[ChB(x^*) = y^*]$.

2) Thus, w.h.p., $f_r(r') = \bot$ as the check fails on (x^*, y^*) .

Case: Not Degraded

Observation: If Eve's strategy for finding inputs r' for f_r is to apply a DMC *ChS* to r_E , then we can prove security.

$f_r(r'):$ • Output *m* if for all (*x*, *y*), |{*i* ∈ [*n*]: $r_i = x$ and $r'_i = y$ }| ~ as expected for an r' = ChB(r).

• Output \perp otherwise.

3) Obfuscation hides *m* in this case.

1) Since ChB is not a degradation of ChE, there exists (x^*, y^*) such that $Pr[ChS(ChE(x^*)) = y^*]$ differs from $Pr[ChB(x^*) = y^*]$.

Observation: If Eve's strategy for finding inputs r' for f_r is to apply a DMC *ChS* to r_E , then we can prove security.

f_r(r'):

- Output *m* if for all (x,y), $|\{i \in [n]: r_i = x \text{ and } r'_i = y\}|$ ~ as expected for an r' = ChB(r).
- Output \perp otherwise.

Issue: Eve can use any arbitrary strategy *g* (not necessarily a DMC) to find *r*'!

Proving Security

Goal: Show that for any strategy g, there exists a DMC ChS and a polynomial p such that

 $\Pr[f_r(g(r_E)) = m] \le p(n) \cdot \Pr[f_r(ChS(r_E)) = m] + negl(n)$

Eve cannot do much better by using *g* than by using *ChS*! This gives us security!

We show this via a hybrid argument.

iO-based Construction of Computational Wiretap Coding Schemes for Binary Input Channels

Based on joint work with Yuval Ishai, Aayush Jain, Amit Sahai, Mark Zhandry [IJLSZ22]
Construction Road Map

1. The setting of the binary **asymmetric** channels (**BAC**) and binary **asymmetric** erasure channels (**BAEC**): an *iO* + injective PRG based construction.

2. Polytope formulation of degradation

3. Reducing constructing a computational wiretap coding scheme for any pair of binary input channels to the asymmetric case.

Indistinguishability Obfuscation (*iO*) [BGIRSVY01]

A secure indistinguishability obfuscation (*iO*) scheme satisfies (informally)

• Completeness:

 Indistinguishability: Circuits C₀ and C₁ of <u>same size</u>, <u>same input length</u>, <u>same</u> <u>output length</u>, and <u>functionally equivalent</u> satisfy:

Warm-up: $ChB = BSC_{0.1}$, $ChE = BEC_{0.3}$

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

Warm-up: $ChB = BSC_{0,1}$, $ChE = BEC_{0,3}$

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

Correctness: $f_r(r_B) = m$ with high probability

Warm-up: $ChB = BSC_{0.1}$, $ChE = BEC_{0.3}$

Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

Eve sees:

 $r_E = \bot 010 \bot 1011 \bot$

Eve does not know:

Using standard hybrid techniques involving *iO*, can show that this circuit is computationally indistinguishable from a circuit that always outputs ⊥.

 $f_r(r'):$ • If $\Delta(r',r) < 0.1n + n^{0.9}$ output m

• Output \perp otherwise.

Eve sees:

 $r_E = \perp 010 \perp 1011 \perp$

Eve does not know:

Using standard hybrid techniques involving *iO*, can show that this circuit is computationally indistinguishable from a circuit that always outputs ⊥.

$f_r(r'):$ • Output \perp

Asymmetric Binary Channels

Binary Asymmetric Channel (BAC)

Binary Asymmetric Erasure Channel (BAEC)

Asymmetric Binary Channels

Binary Asymmetric Channel (BAC)

Binary Asymmetric Erasure Channel (BAEC)

$$ChB = BAC_{p_0, p_1}, ChE = BAEC_{e_0, e_1}$$

Distruction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap nannel. Then, send across an obfuscation of f_r defined below.

C

$ChB = BAC_{p_0, p_1}, ChE = BAEC_{e_0, e_1}$ Construction: Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

$ChB = BAC_{p_0, p_1}, ChE = BAEC_{e_0, e_1}$ **Construction:** Send a uniform random $r \in \{0,1\}^n$ across the wiretap channel. Then, send across an obfuscation of f_r defined below.

$$ChB = BAC_{p_0, p_1}, ChE = BAEC_{e_0, e_1}$$

$$ChB = BAC_{p_0, p_1}, ChE = BAEC_{e_0, e_1}$$

$$ChB = BAC_{p_0, p_1}, ChE = BAEC_{e_0, e_1}$$

Construction Road Map

1. The setting of the binary **asymmetric** channels (**BAC**) and binary **asymmetric** erasure channels (**BAEC**): an *iO* + injective PRG based construction.

2. Polytope formulation of degradation

3. Reducing constructing a computational wiretap coding scheme for any pair of binary input channels to the asymmetric case.

Motivating the Polytope Formulation

- 1. How did we obtain our degradation condition for the asymmetric setting?
- 2. Why is constructing a computational wiretap coding scheme for the asymmetric case sufficient for constructing a computational wiretap coding scheme for any pair of non-degraded binary input channels ?

A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A) = \{Av : 0 \le v \le 1, v_i \in [0,1]\}.$

A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A) = \{Av : 0 \le v \le 1, v_i \in [0,1]\}.$

Theorem: Let $B \in \mathbb{R}^{2 \times n_B}$ and $E \in \mathbb{R}^{2 \times n_E}$ be arbitrary row-stochastic matrices. Then, $B \neq E \cdot S$ for every row stochastic matrix S if and only if $\mathcal{P}(B) \nsubseteq \mathcal{P}(E)$.

A New Polytope formulation

Def: [Channel Polytope] Let A be a matrix of non-negative entries. We associate to A the following polytope, denoted $\mathcal{P}(A)$, which can be defined in either of the following equivalent ways:

- $\mathcal{P}(A)$, is the convex hull of all subset-sums of columns of A.
- $\mathcal{P}(A) = \{Av : 0 \le v \le 1, v_i \in [0,1]\}$.

If row count > 2, then this is false. Explicit counterexample for case of 3.

Theorem: Let $B \in \mathbb{R}^{2 \times n_B}$ and $E \in \mathbb{R}^{2 \times n_E}$ be arbitrary row-stochastic matrices. Then, $B \neq E \cdot S$ for every row stochastic matrix S if and only if $\mathcal{P}(B) \nsubseteq \mathcal{P}(E)$.

Binary Asymmetric Erasure Channel (BAEC)

$$\begin{bmatrix} 1 - p_0 & p_0 \\ p_1 & 1 - p_1 \end{bmatrix} \begin{bmatrix} 1 - e_0 & 0 & e_0 \\ 0 & 1 - e_1 & e_1 \end{bmatrix}$$

Binary Asymmetric Channel (BAC)

Polytope Example

Binary Asymmetric Erasure Channel (BAEC)

$$\begin{bmatrix} 1 - p_0 & p_0 \\ p_1 & 1 - p_1 \end{bmatrix} \begin{bmatrix} 1 - e_0 & 0 & e_0 \\ 0 & 1 - e_1 & e_1 \end{bmatrix}$$

Binary Asymmetric Channel (BAC)

Applications of the Polytope Formulation

- 1. How did we obtain our degradation condition for the asymmetric setting?
- 2. Why is constructing a computational wiretap coding scheme for the asymmetric case sufficient for constructing a computational wiretap coding scheme for any pair of non-degraded binary input channels ?

Construction Road Map

1. The setting of the binary **asymmetric** channels (**BAC**) and binary **asymmetric** erasure channels (**BAEC**): an *iO* + injective PRG based construction.

2. Polytope formulation of degradation

3. Reducing constructing a computational wiretap coding scheme for any pair of binary input channels to the asymmetric case.

Suppose $(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \not\subseteq \mathcal{P}(E)$.

We want to...

- 1. [Bob's Output Alphabet Reduction] find a matrix $B' = BAC_{p_0,p_1}$ such that
 - I. $\mathcal{P}(B') \subseteq \mathcal{P}(B)$ (Bob can perfectly simulate receiving an output from the channel described by B').
 - II. $\mathcal{P}(B') \nsubseteq \mathcal{P}(E)$ (Eve cannot simulate receiving an output from B').

Suppose
$$(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$$
, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \not\subseteq \mathcal{P}(E)$.

Bob's Output Alphabet Reduction

Suppose
$$(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$$
, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \not\subseteq \mathcal{P}(E)$.

Take any extreme point u^* (a 0/1 combination of the columns of B) of $\mathcal{P}(B)$ not contained in $\mathcal{P}(E)$.

Bob's Output Alphabet Reduction

Suppose
$$(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$$
, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \not\subseteq \mathcal{P}(E)$.

Take any extreme point u^* (a 0/1 combination of the columns of B) of $\mathcal{P}(B)$ not contained in $\mathcal{P}(E)$.

Then
$$B' = \begin{bmatrix} u_1^* & 1 - u_1^* \\ u_2^* & 1 - u_2^* \end{bmatrix}$$
 is such that both

 $\mathcal{P}(B') \subseteq \mathcal{P}(B) \text{ and } \mathcal{P}(B) \nsubseteq \mathcal{P}(E)$

Suppose $(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \not\subseteq \mathcal{P}(E)$.

We want to...

- 1. [Bob's Output Alphabet Reduction] find a matrix $B' = BAC_{p_0,p_1}$ such that
 - I. $\mathcal{P}(B') \subseteq \mathcal{P}(B)$ (Bob can perfectly simulate receiving an output from the channel described by B').
 - II. $\mathcal{P}(B') \not\subseteq \mathcal{P}(E)$ (Eve cannot simulate receiving an output from B').
- 2. [Reducing Eve to the Erasure Case] find a matrix $E' = BAEC_{e_0,e_1}$ that describes a channel that gives Eve even more information than if her channel was E yet this channel will still not be informative enough to simulate B'.

Suppose $(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \not\subseteq \mathcal{P}(E)$.

We want to...

- 1. [Bob's Output Alphabet Reduction] find a matrix $B' = BAC_{p_0,p_1}$ such that
 - I. $\mathcal{P}(B') \subseteq \mathcal{P}(B)$ (Bob can perfectly simulate receiving an output from the channel described by B').
 - II. $\mathcal{P}(B') \nsubseteq \mathcal{P}(E)$ (Eve cannot simulate receiving an output from B').
- 2. [Reducing Eve to the Erasure Case] find a matrix $E' = BAEC_{e_0,e_1}$ such that
 - I. $\mathcal{P}(E) \subseteq \mathcal{P}(E')$ (Eve that receives an output from E' can perfectly simulate receiving an output from E).
 - II. $\mathcal{P}(B') \not\subseteq \mathcal{P}(E')$ (Eve that receives an output from E' cannot simulate receiving an output from B').

Reducing Eve's Channel to a BAEC

Apply the strict separating hyperplane theorem!

This olive polytope is the BAEC that contains Eve's channel's polytope yet is not contained by the BAC.

 x_2 x_1 (0, 0)

Suppose $(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \not\subseteq \mathcal{P}(E)$.

We want to...

- 1. [Bob's Output Alphabet Reduction] find a matrix $B' = BAC_{p_0,p_1}$ such that
 - I. $\mathcal{P}(B') \subseteq \mathcal{P}(B)$ (Bob can perfectly simulate receiving an output from the channel described by B').
 - II. $\mathcal{P}(B') \not\subseteq \mathcal{P}(E)$ (Eve cannot simulate receiving an output from B').
- 2. [Reducing Eve to the Erasure Case] find a matrix $E' = BAEC_{e_0,e_1}$ such that
 - I. $\mathcal{P}(E) \subseteq \mathcal{P}(E')$ (Eve that receives an output from E' can perfectly simulate receiving an output from E).
 - II. $\mathcal{P}(B') \not\subseteq \mathcal{P}(E')$ (Eve that receives an output from E' cannot simulate receiving an output from B').

Suppose $(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \nsubseteq \mathcal{P}(E)$.

A computational wiretap coding scheme for (*B*, *E*):

1. $Enc(1^{\lambda}, b)$: Use any computational wiretap *encoding* algorithm for $(B' = BAC_{p_0, p_1}, E' = BAEC_{e_0, e_1})$.

Suppose $(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \not\subseteq \mathcal{P}(E)$.

A computational wiretap coding scheme for (B, E):

- 1. $Enc(1^{\lambda}, b)$: Use any computational wiretap *encoding* algorithm for $(B' = BAC_{p_0,p_1}, E' = BAEC_{e_0,e_1})$.
- 2. $Dec\left(1^{\lambda}, ChB\left(Enc(1^{\lambda}, b)\right)\right)$:
 - 1. Perfectly simulate $ChB'(Enc(1^{\lambda}, b))$ by using $ChB(Enc(1^{\lambda}, b))$.
 - 2. Use any computational wiretap *decoding* algorithm for $(B' = BAC_{p_0,p_1}, E' = BAEC_{e_0,e_1})$.

Suppose $(B = \begin{bmatrix} u_{11} & \cdots & u_{1n_B} \\ u_{21} & \cdots & u_{2n_B} \end{bmatrix}$, $E = \begin{bmatrix} u_{11} & \cdots & u_{1n_E} \\ u_{21} & \cdots & u_{2n_E} \end{bmatrix}$) such that $\mathcal{P}(B) \nsubseteq \mathcal{P}(E)$.

A computational wiretap coding scheme for (B, E):

- 1. $Enc(1^{\lambda}, b)$: Use any computational wiretap *encoding* algorithm for $(B' = BAC_{p_0, p_1}, E' = BAEC_{e_0, e_1})$.
- 2. $Dec\left(1^{\lambda}, ChB\left(Enc(1^{\lambda}, b)\right)\right)$:
 - 1. Perfectly simulate $ChB'(Enc(1^{\lambda}, b))$ by using $ChB(Enc(1^{\lambda}, b))$.
 - 2. Use any computational wiretap *decoding* algorithm for $(B' = BAC_{p_0,p_1}, E' = BAEC_{e_0,e_1})$.

Correctness: Bob can perfectly simulate ChB'

Security: Eve can perfectly simulate ChE using ChE'. If she can break this coding scheme, she can break the (B', E') coding scheme.

Construction Road Map

1. The setting of the binary **asymmetric** channels (**BAC**) and binary **asymmetric** erasure channels (**BAEC**): an *iO* + injective PRG based construction.

2. Polytope formulation of degradation

3. Reducing constructing a computational wiretap coding scheme for any pair of binary input channels to the asymmetric case.

Future Directions – Cryptography

- 1. Can we characterize channel degradation for higher dimensions than two and can we obtain an *iO*-based solution for all higher dimensions?
- 2. Do we need program obfuscation to construct computational wiretap coding schemes?
- 3. More generally, what is the minimum cryptographic assumption that suffices for constructing computational wiretap coding schemes?
- 4. Does the existence of a computational wiretap coding scheme, say for the pair of channels $(BSC_{0.1}, BEC_{0.3})$ imply key exchange in the plain model?

Future Directions – Coding Theory

For traditional error-correcting codes (ECCs) ,the task of correcting erasures is significantly easier than correcting errors (e.g. bit flips).

In our work, we give a *randomized* encoding procedure such that, for parameters e > 2p, correcting a p fraction of *random* errors can be efficiently done while correcting a e fraction of random} errors can be efficiently done while correcting a e fraction of random errors can be efficiently done.

- 1. Can we *directly* (not through program obfuscation) construct codes with these properties?
- 2. Moreover, can we construct one with a *deterministic* encoder?
- Can we design computational wiretap coding schemes from hard average-case problems (e.g. a planted random CSP or a planted graph problem)?

Future Directions – Average-case Complexity Theory

Can we design computational wiretap coding schemes from hard average-case problems (e.g. a planted random CSP or a planted graph problem)?

- We require sharp thresholds at which the problem phase changes from easy to computationally difficult.
- For example, for (BSC_p, BEC_e) , we have an inversion problem $P_{p,e}(x)$ where one is given some "side information" x'.

We desire that if x' has a random p fraction of errors, then recovering x is easy, and instead if x' has a random e fraction of erasures, then recovering x is hard.

Thank you!

HI, MY HAME IS

Appendix: Statistically Evasive Circuit Families

Statistically Evasive Circuit Collection with Auxiliary Input

Let *D* be a distribution of circuits. Let *Aux* be an auxiliary input generator.

For all <u>unbounded</u> oracle machines A that are limited to polynomially many queries to their oracle and for all λ ,

 $\Pr\left[C\left(A^{C}\left(1^{\lambda},Aux(1^{\lambda},C)\right)=1;C \leftarrow D(1^{\lambda})\right] \le negl(\lambda)$

Statistically Evasive Circuit Collection with Auxiliary Input

Let *D* be a distribution of circuits. Let *Aux* be an auxiliary input generator. *D* will be a class of generalized fuzzy point functions with a randomly chosen center *r*.

For all <u>unbounded</u> oracle machines A that are limited to polynomially many queries to their oracle and for all λ ,

 $\Pr\left[C\left(A^{C}\left(1^{\lambda}, Aux(1^{\lambda}, C)\right)\right) = 1; C \leftarrow D\left(1^{\lambda}\right)\right] \leq negl(\lambda)$

Statistically Evasive Circuit Collection with Auxiliary Input

Let *D* be a distribution of circuits. Let *Aux* be an auxiliary input generator. *D* will be a class of generalized fuzzy point functions with a randomly chosen center *r*.

Aux = ChE(r)

For all <u>unbounded</u> oracle machines A that are limits many queries to their oracle and for all λ ,

 $\Pr\left[C\left(A^{C}\left(1^{\lambda}, Aux(1^{\lambda}, C)\right)\right) = 1; C \leftarrow D\left(1^{\lambda}\right)\right] \leq negl(\lambda)$

Statistically Evasive Function Obfuscation

Let (D, Aux) be a statistically evasive circuit collection with auxiliary input.

Correctness: For all λ , all $C \leftarrow D(1^{\lambda})$, $\Pr[\forall x, Obf(1^{\lambda}, C)(x) \neq C(x)] \leq negl(\lambda)$

VBB Security: For all polytime *A*, there exists a polytime oracle machine *Sim* such that for all λ ,

$$\left| \Pr[A(1^{\lambda}, Obf(1^{\lambda}, C), Aux(1^{\lambda}, C)) = 1; C \leftarrow D(1^{\lambda})] \right|$$
$$-\Pr[Sim^{C}(1^{\lambda}, 1^{|C|}, Aux(1^{\lambda}, C)) = 1; C \leftarrow D(1^{\lambda})] \leq negl(\lambda)$$

Statistically Evasive Function Obfuscation

- No impossibility results known for VBB obfuscation of <u>statistically</u> evasive circuits!
 - Previous impossibility results for evasive circuits require the auxiliary input to statistically reveal non-trivial inputs.
- Plausible conjecture that *iO* achieves statistically evasive function obfuscation since *iO* is a best possible obfuscator [GR07].
- [BSMZ16] gives a construction with security in an idealized weak multilinear map model with no known attacks.

Appendix: Security Proof for *iO*-based construction.

Brief Sketch of Security: What Does Eve See?

Eve sees:

 $r_E = \bot 010 \bot 1011 \bot$

Eve does not know:

r = 1010010110

 $f_r(r')$:

• If $\Delta(r', r) < 0.1n + n^{0.9}$ output *m*

• Output \bot otherwise.

Security: What Does Eve See?

Eve does not know: Eve sees: r = 1010010110 $r_F = \bot 010 \bot 1011 \bot$ $S_{\perp} = \{1, 5, 10\}$ $S_{0,1} = [10] \setminus S_{\perp}$ $f_r(r')$: If $\Delta(r', r) < 0.1n + n^{0.9}$ output *m* Output \perp otherwise. ightarrow

Security: An Indistinguishable Viewpoint (1)

Eve sees:

 $r_E = \bot 010 \bot 1011 \bot$

 $S_{\perp} = \{1, 5, 10\}$ $S_{0,1} = [10] \setminus S_{\perp}$

Eve does not know:

r = 1010010110

 $f^{(1)}(r'):$ Constants: r, S_{\perp} . • If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m • Output \perp otherwise.

Security: An Indistinguishable Viewpoint (1)

Getting to the Null Circuit: The *iO* "PRG Trick"

Consider a length-tripling PRG G.

Sample a random element α .

 $f^{(1)}(r')$: Constants: r, S_{\perp}

• If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m

• Output \perp otherwise.

Getting to the Null Circuit: The *iO* "PRG Trick"

Consider a length-tripling PRG G.

Sample a random element α .

 $f^{(1)}(r'):$

Constants: r, S_{\perp}, G .

- Add a conditional branch that doesn't change the functionality of the form: "If $G(?) \neq G(\alpha)$, then output \perp ".
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

Getting to the Null Circuit: The *iO* "PRG Trick"

Consider a length-tripling PRG G.

Sample a random element α .

 $f^{(1)}(r')$: Constants: r, S_{\perp}, G . **Goal**: Switch $G(\alpha)$ with a uniform random R. With overwhelming probability, R is not in the image of G. After the switch, the branch will always execute, resulting in a null circuit.

- Add a conditional branch that doesn Change the functionality of the form: "If $G(?) \neq G(\alpha)$, then output \perp ".
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m^{1}
- Output \perp otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

> $f^{(1)}(r')$: Constants: r, S_{\perp}

• If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m

• Output $\overline{\perp}$ otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_1}$

 $f^{(2)}(r')$: Constants: $r_{S_{0,1}}$, $G(\alpha)$, z, S_{\perp}

- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output $\overline{\perp}$ otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_1}$

If $r'_{S_{\perp}}$ and $r_{S_{\perp}}$ are close to each other, then $z + r'_{S_{\perp}} + r_{S_{\perp}} \approx C(\alpha)$.

By list-decoding, *L* will therefore contain α .

 $f^{(2)}(r')$:

Constants: $r_{S_{0,1}}$, $G(\alpha)$, z, S_{\perp}

• Attempt to recover α : List-decode $z + r'_{S_1}$ to obtain a list L.

- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$. 1. Sample a random element α in domain of C.

2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_1}$

By injectivity of G, there's a unique preimage of $G(\alpha)$, so we can recover α .

f⁽²⁾(r'):

Constants: $r_{S_{0,1}}$, $G(\alpha)$, z, S_{\perp}

- Attempt to recover α : List-decode $z + r'_{S_1}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.
Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_{\perp}}$

Why did we hide $C(\alpha)$?

 $f^{(2)}(r')$:

Constants: $r_{S_{0,1}}$, $G(\alpha)$, z, S_{\perp}

- Attempt to recover α : List-decode $z + r'_{S_1}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m^{1}
- Output \perp otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

 $f^{(2)}(r'):$

Constants: $r_{S_{0,1}}$, $G(\alpha)$, z, S_{\perp}

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_{\perp}}$

Why did we hide $C(\alpha)$?

Ultimately, we'll want to switch $G(\alpha)$ with uniform random R, so there cannot be other constants correlated with α .

- Attempt to recover α : List-decode $z + r'_{S_1}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

 $f^{(2)}(r'):$

Constants: $r_{S_{0,1}}$, $G(\alpha)$, z, S_{\perp}

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_{\perp}}$

Why is *z* uncorrelated with α ?

Because from Eve's point of view, every erasure is *equally likely* to have been a 0 or 1, so r_{S_1} is uniform random.

- Attempt to recover α : List-decode $z + r'_{S_1}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

Injective length-tripling PRG G.

 $f^{(2)}(r')$:

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

We removed $r_{S_1}!$

Constants: $r_{S_{0,1}}, G(\alpha), z, S_{\perp}$

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_{\perp}}$

Why is *z* uncorrelated with α ?

Because from Eve's point of view, every erasure is *equally likely* to have been a 0 or 1, so $r_{S_{\perp}}$ is uniform random.

- Attempt to recover α : List-decode $z + r'_{S_1}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

Injective length-tripling PRG G.

 $f^{(2)}(r'):$

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

We removed $r_{S_1}!$

Constants: $r_{S_{0,1}}, G(\alpha), z, S_{\perp}$

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_{\perp}}$

Why is *z* uncorrelated with α ?

Because from Eve's point of view, every erasure is *equally likely* to have been a 0 or 1, so $r_{S_{\perp}}$ is uniform random.

- Attempt to recover α : List-decode $z + r'_{S_1}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output $\overline{\perp}$ otherwise.

We still need to recover $r_{S_{\perp}}$ to maintain functionality!!

Injective length-tripling PRG G.

 $f^{(2)}(r'):$

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

We removed $r_{S_1}!$

Constants: r_{S_0} , $G(\alpha)$, z, S_{\perp}

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_{\perp}}$

Why is *z* uncorrelated with α ?

Because from Eve's point of view, every erasure is *equally likely* to have been a 0 or 1, so $r_{S_{\perp}}$ is uniform random.

- Attempt to recover α : List-decode $z + r'_{S_1}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- Recover $r_{S_1} \leftarrow \mathcal{C}(\alpha) + z$.
- If $\Delta(r'_{S_{\perp}}, r'_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output $\overline{\perp}$ otherwise.

We still need to recover $r_{S_{\perp}}$ to maintain functionality!!

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_{\perp}}$

 $f^{(2)}(r'):$

Constants: $r_{S_{0,1}}$, $G(\alpha)$, z, S_{\perp}

- Attempt to recover α : List-decode $z + r'_{S_{+}}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- Recover $r_{S_1} \leftarrow C(\alpha) + z$.
- If $\Delta(r'_{S_{\perp}}, r'_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

 $f^{(2)}(r'):$

Constants: $r_{S_{0,1}}, G(\alpha), z, S_{\perp}$

- Attempt to recover α : List-decou
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then $output \perp$.
- Recover $r_{S_1} \leftarrow \mathcal{C}(\alpha) + z$.
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

1. Sample a random element α in domain of C.

Why is this functionally equivalent (w.h.p.) to $f^{(1)}(\cdot)$?

By the degradation condition, there will exist a choice of constant ε such that whenever the Hamming distance check passes, the initial recovery process succeeds.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_1}$

 $f^{(2)}(r')$: Constants: $r_{S_{0,1}}, G(\alpha), z, S_{\perp}$

- Attempt to recover α : List-decode $z + r'_{S_{\perp}}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq G(\alpha)$, then output \bot .
- Recover $r_{S_{\perp}} \leftarrow \mathcal{C}(\alpha) + z$.
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_1}$
- 3. Sample a uniform random *R*.

 $f^{(3)}(r')$:

Constants: $r_{S_{0,1}}$, R, \overline{z} , S_{\perp}

- Attempt to recover α : List-decode $z + r'_{S_{\perp}}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq R$, then output \bot .
- Recover $r_{S_1} \leftarrow \mathcal{C}(\alpha) + z$.
- If $\Delta(r'_{S_{\perp}}, r'_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m
- Output \perp otherwise.

Injective length-tripling PRG G.

List-decodable error correcting code Cfor up to $\frac{1}{2} - \varepsilon$ error rate for any constant $\varepsilon > 0$.

 $f^{(3)}(r'):$

Constants: $r_{S_{0,1}}$, R, z, S_{\perp}

- 1. Sample a random element α in domain of C.
- 2. Hide $\mathcal{C}(\alpha)$ by producing $z \leftarrow \mathcal{C}(\alpha) + r_{S_1}$
- 3. Sample a uniform random R.

With all but negligible probability (due to length-tripling), R will not be in the image of G.

Therefore, the circuit will always output \perp

- Attempt to recover α : List-d are $z + r'_{S_1}$ to obtain a list L.
 - If for all $s \in L$, $G(s) \neq \mathbf{R}$, then output \bot .
- Recover $r_{S_1} \leftarrow \mathcal{C}(\alpha) + z$.
- If $\Delta(r'_{S_{\perp}}, r_{S_{\perp}}) + \Delta(r'_{S_{0,1}}, r_{S_{0,1}}) < 0.1n + n^{0.9}$ output m^{-1}
- Output \perp otherwise.

Appendix: Optimal Rate

Optimal Rate

We can achieve optimal rate in the computational setting. (Rate approaching capacity of *ChB*)

Optimal Rate

We can achieve optimal rate in the computational setting. (Rate approaching capacity of *ChB*)

Optimal Rate

We can achieve optimal rate in the computational setting. (Rate approaching capacity of ChB)

Appendix: Main Hybrid Argument Details

Starting Point: Optimal Strategy g*

Let g^{*} be any deterministic strategy that maximizes $\Pr[f_r(g^*(r_E)) = m]$

(WLOG, we can assume an optimal g* to be deterministic.)

Let g^{*} be any deterministic strategy that maximizes $\Pr[f_r(g^*(r_E)) = m]$

Key Observation: We can exploit symmetry!

f_r(r'):

- Output m if for all (x,y),
 |{i ∈ [n]: r_i = x and r'_i = y}|
 is as expected for an r' = ChB(r).
- Output \perp otherwise.

Let g^{*} be any deterministic strategy that maximizes $\Pr[f_r(g^*(r_E)) = m]$

Key Observation: We can exploit symmetry!

f_r(r'):

- Output m if for all (x,y),
 |{i ∈ [n]: r_i = x and r'_i = y}|
 is as expected for an r' = ChB(r).
- Output \perp otherwise.

f_r only looks at the counts!

g* equally likely to win on $r_E = \pi(s)$ as $r_E = s$ where π is a permutation.

By symmetry, Eve₀ is also an optimal strategy!

Nice Property: For any permutation π , $\pi(\text{Eve}_0(r_E)) = \text{Eve}_0(\pi(r_E))$

Def: r and s have the same <u>weight</u> if there exists a permutation π such that $\pi(r) = s$

Eve₀ acts similarly on all vectors of the same weight.

Let Eve₂ be the following strategy:

Security: With probability 1/poly(n), Eve₂ acts exactly the same as Eve₁! (Probability that each input/output pair hits its expected value.)
Key Observation 1: For any permutation π , $ChS_{rE} = ChS_{\pi(rE)}$ Eve₀ acts similarly on all vectors of the same weight!

Key Observation 1: For any permutation π , $ChS_{rE} = ChS_{\pi(rE)}$ Eve₀ acts similarly on all vectors of the same weight!

Key Observation 2: There are only poly(n) different weights.

Security Summary

Goal: Show that for any strategy g, there exists a DMC ChS and a polynomial p such that

$$\Pr[f_r(g(r_E)) = m] \le p(n) * \Pr[f_r(ChS(r_E)) = m] + negl(n)$$

Eve cannot do much better by using g than by using ChS!

Hybrids:

- Optimal Deterministic Strategy g*
- H₀: Add structure to g*
- H₁: Randomize
- H₂: Use an input-dependent channel.
- H₃: Use an input-independent channel (ChS).

Conclusion

Main Theorem: Assuming secure evasive function obfuscation for the class of generalized fuzzy point functions,

wiretap coding schemes are possible if and only if ChB is not a <u>degradation</u> of ChE.

Conclusion

Main Theorem: Assuming secure evasive function obfuscation for the class of generalized fuzzy point functions,

wiretap coding schemes are possible if and only if ChB is not a <u>degradation</u> of ChE.

Extensions:

- Extends to general message spaces
- Optimal rate
- Universal encoding (encoding only depends on ChB, not ChE)

Conclusion

Main Theorem: Assuming secure evasive function obfuscation for the class of generalized fuzzy point functions,

wiretap coding schemes are possible if and only if ChB is not a <u>degradation</u> of ChE.

Extensions:

- Extends to general message spaces
- Optimal rate
- Universal encoding (encoding only depends on ChB, not ChE)